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SHORT NOTE

A Remark on “An Efficient Real Space Method for
Orbital-Free Density-Functional Theory”
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Abstract. In this short note we clarify some issues regarding the existence of mini-
mizers for the Thomas-Fermi-von Weiszacker energy functional in orbital-free density
functional theory, when the Wang-Teter corrections are included.
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In [1] it was claimed that there always exists a minimizer; however, the statement of
Theorem 2.1 is incomplete. In this note we present the full statement, with a detailed

proof.
The theorem stated in [1] holds as long as the number of electrons is below a certain

critical value. The correct statement for the theorem in [1] is:

Theorem 1 (Existence of minimizers). Given v € C®(Q), and Ky € L2 _(R3), consider the

loc
problem
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In (2), the set () is open and bounded, and star-shaped with respect to 0; € is defined as

and

B:{ueH&(Q)

i >1
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e(Nu)=1< 1+ B1/Ts+ Bors (4)
Aln(rs) + B+ Crsln(rs) + Drs, rs<1,

where rs = (4nNu?/3) 5 the parameters used are v = —0.1423, B =1.0529, B, = 0.3334,
A=0.0311, B=—-0.048, and C=2.019151940622 x 103 and D = —1.163206637891 x 102
are chosen so that (r) and € (r) are continuous at r=1 [6].

Then, there exists Ny > 0 such that:

1. If N < Ny then 3u* € B such that

F[u*]zmeigF[u]. (5)
2. If N> Ny then
irelgF[u] = —oo0. (6)

Proof. The second part of the theorem was proved in [2,3]. We outline the proof
here for completeness. Since 0 € ), 36y > 0 such that B(0,dp) C Q). Consider a compactly
supported function uy € C{(B(0,1)), such that

2_
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and consider the rescaling
1 X
u(g(x):muo(g), 0< <. (8)
Then us; € B, and
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Then if Ay/2<7CrrN?/3/25, we can choose g so that the leading term in (9) is negative,
and when § — 0, the desired result follows.



