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Abstract. We describe in this work a discontinuous-Galerkin Finite-Element method
to approximate the solutions of a new family of 1d Green-Naghdi models. These new
models are shown to be more computationally efficient, while being asymptotically
equivalent to the initial formulation with regard to the shallowness parameter. Using
the free surface instead of the water height as a conservative variable, the models are
recasted under a pre-balanced formulation and discretized using a nodal expansion ba-
sis. Independently from the polynomial degree in the approximation space, the preser-
vation of the motionless steady-states is automatically ensured, and the water height
positivity is enforced. A simple numerical procedure devoted to stabilize the compu-
tations in the vicinity of broken waves is also described. The validity of the resulting
model is assessed through extensive numerical validations.
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1 Introduction

Depth-averaged equations are widely used in coastal engineering for the simulation of
nonlinear waves propagation and transformations in nearshore areas. The full descrip-
tion of surface water waves in an incompressible, homogeneous, inviscid fluid, is pro-
vided by the free surface Euler (or water waves) equations but this problem remains
mathematically and numerically challenging. As a consequence, the use of depth av-
eraged equations helps to reduce the three-dimensional problem to a two-dimensional
problem, while keeping a good level of accuracy in many configurations.
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Many Boussinesq-like models are used nowadays and a detailed review can be found
in [44] and the recent monograph [43]. Denoting by L the typical horizontal scale of
the flow and h0 the typical depth, the shallow water regime usually corresponds to the

configuration where µ :=
h2

0

L2 ≪ 1. If approximations of order O(µ2) of the free surface
Euler equations are furnished by the Boussinesq-type (BT equations in the following)
equations, see [54, 56, 60] for instance, an additional smallness amplitude assumption on
the typical wave amplitude a is classically performed: ε := a

h0
=O(µ). This assumption

often appears as too restrictive for many applications in coastal oceanography. Removing
the small amplitude assumption while still keeping all the O(µ) terms, we obtain the so-
called Green-Naghdi equations (GN equations in the following) [36], also referred to as
Serre equations [66] or fully non-linear Boussinesq equations [80].

A large number of numerical methods have been developed in the past few years
for the BT equations. Let us mention for instance some Finite-Difference (FDM in the
following) approaches [51, 56, 69, 79], Finite-Element methods (FEM in the following)
[48,62,70,77], Finite-Volume discretizations (FVM in the following) for 1d equations [23],
hybrid FDM/FVM [26, 27, 57, 68, 73], or even a purely 2d FVM discretization on unstruc-
tured meshes [39], allowing for mesh refinement and flexibility for large scale simula-
tions.

As far as flexibility is concerned, the use of discontinuous-Galerkin methods (dG
methods in the following) would appear as a natural choice. Indeed, this class of method
provides several appealing features, like compact discretization stencils and hp-adaptivity,
flexibility with a natural handling of unstructured meshes, easy parallel computation
and local conservation properties in the approximation of conservation laws. A general
review of dG methods for convection dominated problems is performed in [16]. Con-
cerning the approximation of more general problems, involving higher-order derivatives,
several methods and important developments have been proposed in recent years, fol-
lowing [5] on Navier-Stokes equations and [17] on convection-diffusion systems. A re-
cent review is performed in [84] and a unified analysis can be found in [4], and [28, 29],
respectively for elliptic problems and both 1st and 2nd order problems in the framework
of Friedrichs’ systems.

The application of dG methods to the Saint-Venant equations (also called Nonlinear
Shallow Water equations, NSW in the following) has recently lead to several improve-
ments, see for instance [3, 30, 82, 83] and the recent review [21]. However, dG methods
for BT equations have been under-investigated. In [31], a hp/spectral element model is
introduced for the 1d enhanced equations of Nwogu [56], while the 2d equations of Pere-
grine [59] are studied in [32], in the flat bottom case, relying on a scalar reformulation that
allowed some computational savings. This formulation is further investigated in [33], ac-
counting for variable depth, and in [34] with the study of the enhanced equations of
Madsen and Sorensen [53]. In [24, 25], an arbitrary order nodal dG-FEM is developed
for the set of highly-dispersive BT equations introduced in [52], respectively in 1d and
2d on unstructured meshes. These equations have a larger range of validity and can the-


