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Abstract. An algebraic multilevel method is proposed for efficiently simulating lin-
ear wave propagation using higher-order numerical schemes. This method is used in
conjunction with the Finite Volume Time Domain (FVTD) technique for the numer-
ical solution of the time-domain Maxwell’s equations in electromagnetic scattering
problems. In the multilevel method the solution is cycled through spatial operators
of varying orders of accuracy, while maintaining highest-order accuracy at coarser ap-
proximation levels through the use of the relative truncation error as a forcing func-
tion. Higher-order spatial accuracy can be enforced using the multilevel method at a
fraction of the computational cost incurred in a conventional higher-order implemen-
tation. The multilevel method is targeted towards electromagnetic scattering problems
at large electrical sizes which usually require long simulation times due to the use of
very fine meshes dictated by point-per-wavelength requirements to accurately model
wave propagation over long distances.
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1 Introduction

Higher-order accurate spatial approximations of partial differential equations (PDEs) are
considered necessary in numerical simulations seeking to resolve complex spatial phys-
ical phenomena. In principle complex spatial phenomena can be numerically captured
with lower-order accurate approximations, but in practice it is often prohibitively ex-
pensive to do so because of the large number of grid points required to obtain requisite
resolution while operating with lower-order techniques. For numerical simulation of
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scattering problems in time-domain electromagnetics, a basic mesh resolution expressed
in terms of points-per-wavelength (PPW) is usually required to adequately resolve the
physical process. This mesh resolution stems mainly from the need to accurately model
wave propagation both in terms of phase and amplitude over long distances in electro-
magnetic scattering problems especially at large electrical sizes [1, 2]. The overall mesh
size is then dictated by the the electrical size of the problem based on the ratio of the char-
acteristic length of the scatterer and the wavelength of the incident radiation. Numeri-
cal techniques like finite difference time domain (FDTD) and finite volume time domain
(FVTD) methods are based on directly solving the time domain Maxwell’s equations, and
face serious difficulties in simulating electromagnetic scattering from electrically large
scatterers due to the requirement of long computational times directly related to the fine
discretization dictated by PPW requirements [1,3]. Higher-order accurate spatial approx-
imations are usually employed to model the time domain Maxwell’s equations with far
fewer grid points due to a more relaxed PPW requirement compared to a lower first-order
method. This often leads to a reduction in overall computational cost due to a significant
decrease in mesh size despite being much costlier on a per-grid-point basis [1, 4]. There
have not been many instances in literature of successful advances at an algorithm level to
accelerate FDTD or FVTD based numerical simulations to offset this disadvantage of long
simulation times at large electrical sizes. The time domain Maxwell’s equations solved
by FDTD and FVTD methods are a set of linear hyperbolic PDEs, which in the case of the
FVTD technique is posed as a set of hyperbolic conservation laws. The multigrid tech-
nique [5] in which the solution is cycled through a hierarchy of grids from fine to coarse
has been very successful in accelerating convergence of boundary value problems. The
multigrid technique initially introduced to solve the system of linear algebraic equations
resulting from discretizing linear elliptic PDEs, are based on the efficient smoothing of
high frequency error components relative to the discretization in hand. The multigrid
method, in the full approximation scheme (FAS) [6] form also applicable to nonlinear
problems, uses the relative local truncation error (τ) between finer and coarser grids as a
forcing function for coarse grid calculations, in order to maintain fine-grid accuracy for
the coarse grid computed solution. The relative truncation error, but between higher and
lower order accurate spatial approximations, is also used in defect correction techniques
to obtain less expensively higher (usually second) order accuracy by appropriately forc-
ing the lower-order calculation. The concept of τ extrapolation [6] can also be applied to
suitably modify the relative truncation error enforced on coarse grid calculations in the
multigrid process to get an even higher order accurate approximation on the coarse grid
than exists on the finer grid. The original geometric multigrid method based on efficient
smoothing of high frequency error components on successive coarser discretizations has
been extended, especially in the case of finite element based higher-order discontinu-
ous Galerkin (DG) methods, to the polynomial order or p-multigrid framework based on
successive coarser approximations on a fixed discretization. In the p-multigrid method,
lower-order polynomial approximations serve as the coarser levels where again high fre-
quency error components are efficiently sought to be smoothed out [7].


