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Abstract. High-order discretization techniques offer the potential to significantly re-
duce the computational costs necessary to obtain accurate predictions when compared
to lower-order methods. However, efficient and universally-applicable high-order
discretizations remain somewhat illusive, especially for more arbitrary unstructured
meshes and for incompressible/low-speed flows. A novel, high-order, central es-
sentially non-oscillatory (CENO), cell-centered, finite-volume scheme is proposed for
the solution of the conservation equations of viscous, incompressible flows on three-
dimensional unstructured meshes. Similar to finite element methods, coordinate trans-
formations are used to maintain the scheme’s order of accuracy even when dealing
with arbitrarily-shaped cells having non-planar faces. The proposed scheme is ap-
plied to the pseudo-compressibility formulation of the steady and unsteady Navier-
Stokes equations and the resulting discretized equations are solved with a parallel im-
plicit Newton-Krylov algorithm. For unsteady flows, a dual-time stepping approach
is adopted and the resulting temporal derivatives are discretized using the family of
high-order backward difference formulas (BDF). The proposed finite-volume scheme
for fully unstructured mesh is demonstrated to provide both fast and accurate solu-
tions for steady and unsteady viscous flows.
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1 Introduction

Computational fluid dynamics (CFD) has proven to be an important enabling technol-
ogy in many areas of science and engineering. In spite of the relative maturity and
widespread success of CFD in these areas, there is a variety of physically-complex flows
which are still not well understood and are very challenging to predict with numeri-
cal methods. Such flows include, but are certainly not limited to, multiphase, turbulent,
and combusting flows encountered in aerospace propulsion systems (e.g., gas turbine en-
gines and solid propellant rocket motors). These flows present numerical challenges as
they generally involve a wide range of complicated physical/chemical phenomena and
scales.

Many flows of engineering interest are incompressible or can be approximated as in-
compressible to a high degree of accuracy, i.e. low-speed flows. Incompressible flows are
challenging to solve numerically because the partial derivative of density with respect
to time vanishes. As a result, the governing equations themselves are ill-conditioned.
Various methods for solving the incompressible Navier-Stokes equations have been suc-
cessfully developed to overcome this ill-conditioning [1, 2]. These include but are not
limited to the pressure-Poisson [3, 4], fractional-step [5, 6], vorticity-based [7, 8], pseudo-
compressibility [9], and characteristic-based methods [10, 11]. The equations governing
fully-compressible flows have also been successfully applied to incompressible and low-
speed flows by using preconditioning techniques [12–17]. The pseudo-compressible for-
mulation [9, 18–25] is attractive because it is easily extended to three dimensions and ap-
plied in conjunction with high-order schemes. This method was originally referred to as
the artificial compressibility method by Chorin [9], but Chang and Kwak [26] introduced
the more accurate name “pseudo-compressibility method”.

High-order methods have the potential to significantly reduce the cost of modelling
physically-complex flows, but this potential is challenging to fully realize. As such, the
development of robust and accurate high-order methods remains an active area of re-
search. Standard lower-order methods (i.e, methods up to second order) can exhibit
excessive numerical dissipation for multi-dimensional problems and are often not prac-
tical for physically-complex flows. High-order methods offer improved numerical effi-
ciency for accurate solution representations since fewer computational cells are required
to achieve a desired level of accuracy [27]. For hyperbolic conservation laws and/or com-
pressible flow simulations, the main challenge involves obtaining accurate discretizations
while ensuring that discontinuities and shocks are handled reliably and robustly [28].
High-order schemes for elliptic partial differential equations (PDEs) that govern diffu-
sion processes should satisfy a maximum principle, even on stretched/distorted meshes,
while also remaining accurate [29]. There are many studies of high-order schemes devel-
oped for finite-volume [28, 30–39], discontinuous Galerkin [40–49], spectral-difference/
spectral-volume [50–54], flux reconstruction [55], and lifting collocation penalty meth-
ods [56, 57] on both structured and unstructured mesh. In spite of these many advances,
there is still no consensus for a robust, efficient, and accurate scheme that fully deals with


