
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 2, No. 3, pp. 545-576

Commun. Comput. Phys.
June 2007

Use of the Spatial kD-Tree in Computational Physics

Applications

A. Khamayseh1,∗ and G. Hansen2

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831, USA.
2 Multiphysics Methods Group, Idaho National Laboratory, Idaho Falls, ID, USA.

Received 13 July 2006; Accepted (in revised version) 8 November 2006

Available online 4 December 2006

Abstract. The need to perform spatial queries and searches is commonly encountered
within the field of computational physics. The development of applications ranging
from scientific visualization to finite element analysis requires efficient methods of lo-
cating domain objects relative to general locations in space. Much of the time, it is
possible to form and maintain spatial relationships between objects either explicitly
or by using relative motion constraints as the application evolves in time. Occasion-
ally, either due to unpredictable relative motion or the lack of state information, an
application must perform a general search (or ordering) of geometric objects without
any explicit spatial relationship information as a basis. If previous state information
involving domain geometric objects is not available, it is typically an involved and
time consuming process to create object adjacency information or to order the objects
in space. Further, as the number of objects and the spatial dimension of the problem
domain is increased, the time required to search increases greatly. This paper proposes
an implementation of a spatial k-d tree (skD-tree) for use by various applications when
a general domain search is required. The skD-tree proposed in this paper is a spatial
access method where successive tree levels are split along different dimensions. Ob-
jects are indexed by their centroid, and the minimum bounding box of objects in a
node are stored in the tree node. The paper focuses on a discussion of efficient and
practical algorithms for multidimensional spatial data structures for fast spatial query
processing. These functions include the construction of a skD-tree of geometric objects,
intersection query, containment query, and nearest neighbor query operations.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07

Key words: Geometric query, bounding volume hierarchy, skD-tree, containment query, mesh
generation, h-refinement, remapping.

∗Corresponding author. Email addresses: khamaysehak@ornl.gov (A. Khamayseh), Glen.Hansen@inl.gov
(G. Hansen)

http://www.global-sci.com/ 545 c©2007 Global-Science Press



546 A. Khamayseh and G. Hansen / Commun. Comput. Phys., 2 (2007), pp. 545-576

1 Introduction

Computational physics applications are rapidly increasing in complexity to address evolv-
ing requirements to include more realistic models and more detailed domain represen-
tations. Requirements often include the incorporation of more complex geometric forms
of the parts and components within the model along with a larger number of parts and
components being used to form the computational domain. Indeed, the simple two-
dimensional models of the recent past that typically employed structured mesh dis-
cretizations in which geometric objects were represented by line segments, have been
replaced by complex three-dimensional unstructured meshes containing general objects
defined by compositions of parametric curves and surfaces.

Common across a wide variety of applications is the need to perform spatial queries
involving the geometric objects contained within the domain with respect to computa-
tional abstractions employed within the simulation application. For example, it is nec-
essary to track the movement of objects with respect to the elements in a transient Eu-
lerian finite element analysis application. Many other applications, including biological
population modeling, molecular dynamics, multiphase fluid dynamics, scientific visual-
ization, and solid modeling also require spatial query capabilities. Typically, there is a
spectrum of application requirements for spatial query functionality, which range from a
very general geometry query to the need to perform highly localized searches of nearby
objects. In the general problem, the state and relationship of the geometric objects are
unknown. This query problem involves determining the relationship between the do-
main objects and simulation abstractions in the most general case. In the latter localized
search, the state of the objects and their relationships to each other are typically known
to some degree. Perhaps the spatial location of the objects were known at a previous
time step, for example. For this application, it is typically more efficient to make use of
this known state information to economize the spatial query processing; a general search
each time step is usually too costly. However, a general search is usually needed when
the application initializes to construct the local information.

It is always preferable to use spatial adjacency information if it is available, instead
of general spatial searching. For example, the use of an Eulerian Walk [1] for the transfer
of data from one distinct mesh to another in a multiphysics application has a complexity
of O(m+n), where m is the number of elements in the source mesh, and n is the num-
ber of elements in the target mesh. Generalized spatial searching, such as the algorithm
proposed here, can determine element intersection in O(mlogn) time. Clearly, as the
number of objects in the source and target meshes increase, the time required to perform
the general search increases at a faster rate when the general approach is used. This pa-
per proposes an implementation of a general search method; a spatial k-d tree (skD-tree)
for use by various applications when a general domain search is required.

In the parlance of geometric modeling, objects are usually described by their associ-
ated spatial attributes (e.g. location). Within a given modeling configuration, objects may
“intersect” each other, be “adjacent” to one-another, and may “contain” other objects.


