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Abstract. We discuss the basic concept of compartmental modelling in pharmacoki-
netics and demonstrate that all the solutions admitted by multi-compartment mod-
els of classical pharmacokinetics are expressed as linear combinations of exponential
functions of time. This lends itself to data analysis that depends on fitting exponential
functions to finite size sets. A mathematical method developed a long time ago to deal
with this type of problem is called Prony’s method. We discuss the usefulness of this
method in pharmacokinetic modeling and apply it to a particular data set obtained
for the drug mibefradil. In spite of the method’s power in dealing with well-behaved
data sets, we indicate the existence of severe limitations since real concentration curves
coming from pharmacokinetic data are seldom purely exponential.

PACS: 82.39.-k, 05.45.Df, 61.43.Hv, 82.30.-b

Key words: Data analysis, pharmacokinetics modelling, Prony’s method.

1 Introduction to classical pharmacokinetics

In an attempt to interpret and quantify pharmacokinetic data, a commonly used model
scheme, now termed “classical”, was established. The biological model system under
study is described by one, two, or more kinetically distinguishable interacting compart-
ments. Each compartment represents a space of the body that is assumed to be kinetically
distinct and homogeneously distributed with the drug [1–3]. The movement of drug be-
tween the compartments and the elimination of drug are assumed to follow the law of
mass action to the first-order with time independent rate constants, ki,j. Their mammil-
lary structure is intended to correspond to biological model systems composed of organ
arrangements that receive blood circulation in parallel, as in humans. Source terms, R,
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Figure 1: A schematic of a general 2-compartment model where the sources enter, and measurements are taken
from, the central compartment. The ith-compartment is considered open if it looses drug to the environment
(k0i>0) and closed if it does not (k0i=0). A multi-compartment model is considered mamillary if the secondary
compartments are connected to the central compartment in a parallel arrangement and concatenary if the
secondary compartments are connected in series.

are usually given as an initial condition for an effectively instantaneous bolus injection,
as a zero-order (constant rate) i.v. infusion, or a first-order absorption of the drug from
an oral dose (see Fig. 1). Ordinarily, measurements of drug plasma concentration are
taken from the “central compartment” which is assumed to contain most or all of the
blood [4–6].

The mass balance equations for a multi-compartmental system with m compartments
are first-order differential equations that take the vector-matrix form

d~X

dt
=−K~X+~R,

~C=V
−1~X,

(1.1)

where ~X is a column vector of the m independent state variables (mass or concentration)
of the system, K is a constant matrix composed of the first-order rate constants, ki,j, such

that, if the model is open (see Fig. 1) then K is non singular and invertible [2], ~R is the

column vector describing the sources, ~C is the vector of compartment concentrations, and
V is the distribution volume matrix. Solutions to this differential system are realized by
standard matrix methods to be sums of exponentials with the form for each compartment
following

Cj(t)=
m

∑
i=0

Aij e
aijt, (1.2)

where Aij and aij are both functions of the first-order rate constants, f (ki,j). The form
of the solution is the key reason that multi-compartmental modelling is so popular [7].


