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Abstract. Superconvergence for the lowest-order edge finite elements on strongly reg-
ular triangulation is studied. By the averaging technique, superconvergence of order
O(h2) is established at the midpoint of the interior edge for both the finite element
solution and the curl of the finite element solution. Numerical results justifying our
theoretical analysis are presented.
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1 Introduction

Superconvergence of finite element methods (FEMs) has been an active research topic
due to its strong relevance with a posteriori error estimations for the adaptive finite ele-
ment method and most of the interest was devoted to elliptic and parabolic equations, see
for example the surveys [2,4,7,15,25,26] and the monographs [5,9]. In regards to edge el-
ements and their applications to Maxwell’s equations, the superconvergence are limited.
The first superconvergence result is due to Monk’s 1994 work [23] for time-dependent
Maxwell system. The integral identity technique was applied by Lin and Yan [20] to deal
with the same problem once more. One order of superconvergent factor was obtained
by them for k-th Nédélec elements on cubic meshes, which improved the result in [23].
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For 2-D Maxwell’s equations, it was demonstrated that similar result remains true, see-
ing Lin [19] for the lowest order rectangular edge elements, Lin [17] for the second order
rectangular edge elements and Brandts [3] for k-th triangular edge elements. Brandts’
result was refined by Lin [18] in 2003: if the domain is rectangular, two order of super-
convergent factor was derived for the k-th (k≥ 1) Nédélec elements on the rectangular
meshes. The Maxwell’s equations in the aforementioned surveys were investigated in
vacuum and the case of complicated medium can be also found in the literature, see for
instance [16] where three popular dispersive media were considered. Note that the above
mentioned results are all global superconvergence. Recently, superconvergence results at
some special points are established by Huang and Li: the cubic center [14], the rectangu-
lar center [11], the midpoint of interior edge for uniform triangular mesh [13] (in these
papers, the mixed FEM is used) and [10] (where the obtained superconvergence by FEM
is utilized to construct an adaptive FEM method for cloaking simulation) and the mid-
point of interior edge for uniform tetrahedral mesh [12]. For recent progress, we refer
to the work of Chen [6], Chung [8] and Qiao [24]. A new Hybridizable Discontinuous
Galerkin (HDG) method, the Staggered Discontinuous Galerkin (SDG) method and the
nonuniform mixed FEM were exploited, respectively.

The superconvergence analysis on strongly regular mesh is known to be much more
complicated than that on uniform mesh. It has been shown by Chen [4] that there ex-
ists superconvergence for elliptic equations on strongly regular mesh. The main goal of
this paper is to transfer the superconvergence result in [4] to Maxwell’s equations. Pi-
ola transformation [21], which is the covariant transformation for vector-fields, plays an
essential role in our analysis.

We focus our analysis on time harmonic Maxwell’s equations [10, 12, 22]:

∇×∇×u−κ2
0u= f in Ω, (1.1)

n×u=0 on ∂Ω. (1.2)

Here, u represents the electric field in Ω, a Lipschitz polyhedron in R
2. f stands for a

given function related to the imposed current sources, which is assumed to be smooth
enough. κ0 indicates the wavenumber assumed to be real and positive and n denotes
the outward unit normal vector field. Eq. (1.2) specifies a standard perfectly conducting
boundary condition on the boundary of Ω. Let s≥0. To obtain the weak formulation of
(1.1)-(1.2), we introduce the following Sobolev spaces

H(curl;Ω)={v∈ (L2(Ω))2 :∇×v∈L2(Ω)},

H0(curl;Ω)={v∈H(curl;Ω) : n×v=0 on ∂Ω},

Hs(curl;Ω)={v∈ (Hs(Ω))2 :∇×v∈Hs(Ω)}

equipped with the norms

||v||H(curl;Ω)=(||v||20+||∇×v||20)
1
2 ,

||v||Hs(curl;Ω)=(||v||2Hs(Ω)+||∇×v||2Hs(Ω))
1
2 ,


