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Abstract. Molecular beam epitaxy (MBE) is an important and challenging research
topic in material science. In this paper, we propose a new fully discrete scheme for
the well-celebrated continuum MBE model with slope selection. First of all, we use a
multi-step strategy to discretize the MBE model in time. The obtained semi-discrete
scheme is proved to possess properties of total mass conservation, unconditionally en-
ergy stability and uniquely solvability. The rigorous error estimate is then conducted
to show its second-order convergence. The semi-discrete scheme is further discretized
in space using the Fourier pseudo-spectral method. The fully discrete scheme is also
shown to preserve mass-conservation and energy-dissipation properties. Afterward,
several numerical examples are presented to validate the accuracy and efficiency of
our proposed scheme. In particular, the scaling law for the roughness growing and
effective energy decaying are captured during long-time coarsening dynamic simula-
tions. The idea proposed in this paper could be readily utilized to design accurate and
stable numerical approximations for many other energy-based phase field models.
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1 Introduction

Molecular beam epitaxy (MBE) method is a broadly used approach of thin-film deposi-
tion of a single crystal. So this strategy is widely applied in semiconductor manufacture.
In recent years, MBE becomes an important and challenging research topic in material
science. In the meanwhile, many mathematical models have been developed to study
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the epitaxy dynamics, ranging from molecular dynamics simulations to continuum mod-
els [1, 6, 11, 16, 18, 20, 23, 24, 29, 32].

In this paper, we focus on one broadly-used continuum model for the MBE, which is
derived via an energy variational approach and satisfies an energy dissipation law (i.e.,
thermodynamically consistent) [23, 24, 33, 35]. Consider a smooth domain Ω, and use
φ(x,t) :Ω→R to denote the height function of MBE, and the effective free energy is given
as

E(φ)=
∫

Ω

[ ε2

2
|∆φ|2+ f (∇φ)

]

dΩ. (1.1)

Here the first term represents the isotropic surface diffusion effect, and the second term
approximates the Enrlich-Schwoebel effect that the adatoms stick to the boundary from
an upper terrace, contributing to the steepening of mounds in the film [3]. The evolution
equation for φ could be derived via a L2 gradient flow associated with the effective free
energy functional E(φ), i.e., the equation reads as

∂tφ=−M
δE

δφ
, (1.2)

where M is the mobility parameter (with 1
M proportional to the relaxation time). For

simplicity of notations, we consider periodic boundary condition in this paper.
If we choose the second term of (1.1) as f (∇φ)=− 1

2 ln(1+|∇φ|2), the corresponding
equation would be

∂tφ=−M

(

ε2∆2φ+∇·
( ∇φ

1+|∇φ|2

)

)

, (1.3)

and the energy dissipation rate of (1.2) could be calculated as

dE

dt
=−

∫

Ω
M

(

ε2∆2φ+∇·
( ∇φ

1+|∇φ|2

)

)2

dΩ. (1.4)

On the other hand, if we choose f (∇φ) = 1
4 (|∇φ|2−1)2, the corresponding equation

would become
∂tφ=−M

(

ε2∆2φ+∇·((1−|∇φ|2)∇φ)
)

, (1.5)

and the corresponding energy dissipation rate of (1.2) could be calculated as

dE

dt
=−

∫

Ω
M
(

ε2∆2φ+∇·((1−|∇φ|2)∇φ)
)2

dΩ. (1.6)

In addition, both models (1.3) and (1.5) obey the total mass conservation law

d

dt

∫

Ω
φ(x,t)dΩ=0. (1.7)

When the surface gradient |∇φ| is small (|∇φ|≪1), by the Taylor expansion, we can easily
recognize 1

1+|∇φ|2
≈ 1−|∇φ|2. Then model (1.5) could be formally derived from model


