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Abstract. Based on two-grid discretizations, a local and parallel finite element algo-
rithm (LPFEA) based on Newton iteration for solving the stationary incompressible
magnetohydrodynamics (MHD) is considered in this paper. The basic idea of the al-
gorithm is to compute the nonlinear system by Newton iteration on a globally coarse
mesh first, then solve a series of subproblems of residual correction on the correspond-
ing subdomains with fine grids in parallel. The optimal error estimates with respec-
tive to iterative step m and mesh sizes H and h≪H are derived. The efficiency of the
method is illustrated by numerical experiments.
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1 Introduction

The incompressible MHD model describes the interaction between a viscous, incom-
pressible, electrically conducting fluid and an external magnetic field. The govern-
ing equations are a coupled system of Navier-Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetism via Lorentz’s force and Ohm’s law. MHD is
very important and widely used in technological and industrial applications, such as
metallurgical engineering, electromagnetic pumping, stirring of liquid metals, and MHD
generators, see [1–3]. There have been various numerical approaches about finite element
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method (FEM) for solving the MHD system, such as a finite element scheme based on reg-
ularized exact penalty formulation by Gunzburger et al. [4], mixed finite element method
(MFEM) on general Lipschitz polyhedra by Schötzau [5], MFEM based on weighted regu-
larization by Hasler et al. [6], unconditionally convergent stabilized finite element scheme
by Badia et al. [7], two-level finite element iterations by Dong and He [8,9], a least-squares
finite element formulation by Salah et al. [10]. As for the nonstationary incompressible
MHD system, first-order and second-order implicit/explicit fully discrete finite element
schemes are presented by Layton et al. [11], Euler semi-implicit fully discrete finite el-
ement schemes are analyzed by Prohl [12] and He [13]. Regarding the methodologies
used for solving nonlinear partial differential equations, the two-level finite element al-
gorithm [14–17] is one of the effective methods which can save much computing time
and storage space. In addition, the multilevel iterative FEM studied in [18–20] can also
treat the nonlinear problems efficiently.

Although computing power increases rapidly, constructing a highly refined, efficient
algorithm for solving the incompressible MHD flows is still a big challenge. Based on
the observation that the global behavior of a finite element solution is dominated by
low frequencies and the local behavior is mostly governed by high frequencies, Xu and
Zhou [21] designed a LPFEA to a class of elliptic boundary value problems. The LPFEA
is thought as a higher performance method than classical Galerkin FEM, so it has been
developed and applied to solve strong nonlinear systems, such as Navier-Stokes problem
[22–24] and MHD equations [25] and so on. The algorithm is based on the two-grid
technique and the domain decomposition method [26], in which the overlapping domain
decomposition of the whole domain with the matching grids is used. Besides, for the
convergence analysis of conforming FEM on overlapping nonmatching mesh based on
the partition of unity method, we refer the interested readers to Huang and Xu [27].

So far, there are much less works on LPFEA for MHD problem. Inspired by [21, 28],
as an extension of our recent work [25], the goal of this article is to design a LPFEA
based on Newton iteration for the stationary incompressible MHD flows. On a globally
coarse grid, the nonlinear system is solved by Newton iteration first, then the local sub-
problems of residual correction are computed in parallel on some subdomains with fine
grids. The competitive superiorities of the algorithm are two aspects. It has low commu-
nication complexity and greatly reduces computing time, since the residual problems are
independent of each other and only dependent of the coarse grid solution. The Newton
iteration is exponentially convergent which is faster than other classical Stokes-type and
Oseen-type iterations studied in [29].

This paper is arranged as follows. In the next section, we provide mathematical pre-
liminaries and error bounds of MFEM for the steady incompressible MHD flows. In
Section 3, based on the two-grid discretizations and overlapping domain decomposition
technique, we propose the LPFEA based on Newton iteration, and analyze the error es-
timates with respect to the iterative step m and the mesh grid sizes H and h. In the last
section, we carry out a series of numerical experiments to confirm the high efficiency of
the proposed method.


