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Abstract. We design and numerically validate a local discontinuous Galerkin (LDG)
method to compute solutions to the initial value problem for a nonlinear variational
wave equation originally proposed to model liquid crystals. For the semi-discrete LDG
formulation with a class of alternating numerical fluxes, the energy conserving prop-
erty is verified. A dissipative scheme is also introduced by locally imposing some
numerical “damping” in the scheme so to suppress some numerical oscillations near
solution singularities. Extensive numerical experiments are presented to validate and
illustrate the effectiveness of the numerical methods. Optimal convergence in L2 is
numerically obtained when using alternating numerical fluxes. When using the cen-
tral numerical flux, only sub-optimal convergence is observed for polynomials of odd
degree. Numerical simulations with long time integration indicate that the energy
conserving property is crucial for accurately capturing the underlying wave shapes.
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1 Introduction

Many applications involve the solution of wave equations. In this paper, we consider a
variational nonlinear wave equation that models the propagation of orientation waves in
the director field in nematic liquid crystals. Let the director filed n(x,t) be the orientation
of the molecules at each location x and time t, in planar deformations of nematic liquid
crystals involving only one-dimensional space variable, the director field is given by

n(x,t)=cosu(x,t)ex+sinu(x,t)ey,
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where ex and ey are the coordinator vectors in the x and y directions, respectively. In
such a setting, the dynamics of the liquid crystal is described by some unknown function
u(x,t), which represents the angle of the director field relative to the x-direction, and the
variational principle [28] reduces to the following nonlinear wave equation

∂2
t u−c(u)∂x(c(u)∂xu)=0, (1.1)

and the wave speed c(u) is given by

c2(u)=αcos2u+βsin2u

for some positive constant α,β. In general, we assume that c(u) is a smooth, uniformly
positive function. One of the most important properties of the wave equation is the con-
servation of energy. Indeed, the analysis in [5,6,24] shows that conservative solutions are
unique, globally defined, and yield a flow on the space of couples (u,ut)∈H1(R)×L2(R).
For each conservative solution, the total energy

E(t)=
1

2

∫

(∂tu(x,t)2+(c(u(x,t))∂xu(x,t))2)dx

remains constant in time. Aim of this work is to compute such a conservative solution to
(1.1) with an arbitrary high order of accuracy.

Note that smooth solutions may well develop singularities in finite time [17]. It was
observed in [6, 24] that conservative solutions can occasionally be measure-valued. On
the other hand, for dissipative solutions, studied in [7, 17, 33, 34], the continuous depen-
dence for general initial data in H1×L2 remains an open question. Nevertheless, when
singularity occurs in solutions, the numerical approximation to ux may become oscilla-
tory. We therefore also propose a dissipative scheme by locally imposing some numerical
“damping” in the conservative scheme, in such a way that it not only indicates where
the singularity is located, but it also provides a measure for the artificial damping that
smoothens singularities. Relatively little dissipation is added in the smooth regions away
from the singularity to ensure an accurate computation of solution structures away from
singularities.

Existing numerical results for wave propagation reveal that energy conserving nu-
merical methods, which conserve the discrete approximation of energy, are favorable
because they are able to maintain the phase and shape of the waves accurately. Numeri-
cal methods without this property may result in substantial phase and shape errors after
long time integration.

A vast amount of literature can be found on the numerical approximation of wave
equations, including finite difference, finite element, finite volume, spectral methods and
integral equation based methods. In this paper, we will confine our attention to the dis-
continuous Galerkin (DG) method, which is a class of finite element methods using com-
pletely discontinuous piecewise-polynomial space for the numerical solution and the test
functions in the spatial variables. Various DG methods have been designed for first order


