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Abstract. In this paper we describe a numerical method to solve numerically the
weakly dispersive fully nonlinear SERRE–GREEN–NAGHDI (SGN) celebrated model.
Namely, our scheme is based on reliable finite volume methods, proven to be very ef-
ficient for the hyperbolic part of equations. The particularity of our study is that we
develop an adaptive numerical model using moving grids. Moreover, we use a special
form of the SGN equations where non-hydrostatic part of pressure is found by solv-
ing a linear elliptic equation. Moreover, this form of governing equations allows to
determine the natural form of boundary conditions to obtain a well-posed (numerical)
problem.
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1 Introduction

In 1967 D. PEREGRINE derived the first two-dimensional BOUSSINESQ-type system of
equations [117]. This model described the propagation of long weakly nonlinear waves
over a general non-flat bottom. From this landmark study the modern era of long wave
modelling started. On one hand researchers focused on the development of new models
and in parallel the numerical algorithms have been developed. We refer to [20] for a
recent ‘reasoned’ review of this topic.
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The present manuscript is the continuation of our series of papers devoted to the long
wave modelling. In the first part of this series we derived the so-called base model [92],
which encompasses a number of previously known models (but, of course, not all of
nonlinear dispersive systems). The governing equations of the base model are

Ht + ∇·[HU ] = 0, (1.1)

ūt + (ū·∇)ū +
∇P

H
=

p̌

H
∇h − 1

H

[

(HU )t + (ū·∇)(HU )

+ H(U ·∇)ū + HU ∇· ū

]

, (1.2)

where U
def
:= ū + U is the modified horizontal velocity and U = U (H, ū) is the closure

relation to be specified later. Depending on the choice of this variable various models can
be obtained (see [92, Section §2.4]). Variables P and p̌ are related to the fluid pressure.
The physical meaning of these variables is reminded below in Section 2. In the present
paper we propose an adaptive numerical discretization for a particular, but very popular
nowadays model which can be obtained from the base model (1.1), (1.2). Namely, if we
choose U ≡ 0 (thus, U becomes the depth-averaged velocity u) then we obtain equa-
tions equivalent to the celebrated SERRE–GREEN–NAGHDI (SGN) equations [72,126,127]
(rediscovered later independently by many other researchers). This system will be the
main topic of our numerical study. Most often, adaptive techniques for dispersive wave
equations involve the so-called Adaptive Mesh Refinement (AMR) [121] (see also [15] for
nonlinear shallow water equations). The particularity of our study is that we conserve
the total number of grid points and the adaptivity is achieved by judiciously redistribut-
ing them in space [83, 84]. The ideas of redistributing grid nodes is stemming from the
works of BAKHVALOV [7], IL’IN [85] and others [1, 134].

The base model (1.1), (1.2) admits an elegant conservative form [92]:

Ht + ∇·[HU ] = 0, (1.3)

(HU)t + ∇·

[

Hū⊗U + P(H, ū)·I + HU ⊗ū

]

= p̌∇h, (1.4)

where I ∈ Mat2×2(R) is the identity matrix and the operator ⊗ denotes the tenso-
rial product. We note that the pressure function P(H, ū) incorporates the familiar hy-

drostatic pressure part
gH2

2
well-known from the Nonlinear Shallow Water Equations

(NSWE) [11, 43]. By setting U ≡ 0 we obtain readily from (1.3), (1.4) the conservative
form of the SGN equations (one can notice that the mass conservation equation (1.1) was
already in conservative form).

Nonlinear dispersive wave equations represent certain numerical difficulties since
they involve mixed derivatives (usually of the horizontal velocity variable, but some-
times of the total water depth as well) in space and time. These derivatives have to be
approximated numerically, thus leaving a lot of room for the creativity. Most often the so-
called Method Of Lines (MOL) is employed [97,120,123,128], where the spatial derivatives


