Second-Kind Boundary Integral Equations for Scattering at Composite Partly Impenetrable Objects

Xavier Claeys¹, Ralf Hiptmair^{2,*} and Elke Spindler²

 ¹ Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, UMR 7598, Laboratoire Jacques-Louis Lions, équipe Alpines, F-75005, Paris, France.
² Seminar for Applied Mathematics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland.

Received 4 October 2016; Accepted (in revised version) 4 May 2017

Abstract. We consider acoustic scattering of time-harmonic waves at objects composed of several homogeneous parts. Some of those may be impenetrable, giving rise to Dirichlet boundary conditions on their surfaces. We start from the recent second-kind boundary integral approach of [X. Claeys, and R. Hiptmair, and E. Spindler. *A second-kind Galerkin boundary element method for scattering at composite objects.* BIT Numerical Mathematics, 55(1):33-57, 2015] for pure transmission problems and extend it to settings with essential boundary conditions. Based on so-called global multipotentials, we derive variational second-kind boundary integral equations posed in $L^2(\Sigma)$, where Σ denotes the union of material interfaces. To suppress spurious resonances, we introduce a combined-field version (CFIE) of our new method.

Thorough numerical tests highlight the low and mesh-independent condition numbers of Galerkin matrices obtained with discontinuous piecewise polynomial boundary element spaces. They also confirm competitive accuracy of the numerical solution in comparison with the widely used first-kind single-trace approach.

AMS subject classifications: 65N12, 65N38, 65R20

Key words: Acoustic scattering, second-kind boundary integral equations, Galerkin boundary element methods.

1 Introduction

1.1 Acoustic scattering boundary value problem

The governing equation for acoustic scattering of time-harmonic waves is the Helmholtz equation. In this article, we confine ourselves to the case of a globally constant principal part given by $-\Delta$.

http://www.global-sci.com/

©2018 Global-Science Press

^{*}Corresponding author. *Email addresses:* xavier.claeys@upmc.fr (X. Claeys), hiptmair@sam.math.ethz.ch (R. Hiptmair), elke.spindler@sam.math.ethz.ch (E. Spindler)

Figure 1: Two-dimensional illustration of a typical geometry of a composite scatterer for L=3.

The scatterer occupies a bounded domain $\Omega_* \subset \mathbb{R}^d$, d = 2,3. We assume a partitioning of Ω_* into open Lipschitz subdomains, i.e. $\overline{\Omega}_* = (\bigcup_{i=1}^L \overline{\Omega}_i) \cup \overline{\Omega}_{\bullet}$, where $\overline{\Omega}$ denotes the closure of the domain Ω . The subdomains $\Omega_1, \dots, \Omega_L$ represent the different homogeneous penetrable materials whereas the impenetrable object with Lipschitz curvilinear polygonal/polyhedral boundary is given by Ω_{\bullet} . See Fig. 1 for a drawing of the scatterer in the case d=2. The unbounded exterior complement of the scatterer is given by the Lipschitz domain $\Omega_0 := \mathbb{R}^d \setminus \overline{\Omega}_*$. Like $\Omega_1, \dots, \Omega_L$, also Ω_0 is filled with homogeneous penetrable material. We characterize the penetrable materials by their wave numbers $\kappa_i \in \mathbb{R}_+$, for $i \in \{0, 1, \dots, L\}$. They enter the piecewise constant coefficient function $\kappa \in L^{\infty}(\mathbb{R}^d), \kappa|_{\Omega_i} \equiv \kappa_i$. The impenetrable object Ω_{\bullet} will be modeled by imposing Dirichlet boundary conditions at its boundary $\partial \Omega_{\bullet}$.

By construction, we observe that $\Omega_i \cap \Omega_j = \emptyset$ for $j \neq i$, for indices $i, j \in \{\bullet, 0, 1, \dots, L\}$. The boundary of the subdomain Ω_i is given by $\partial \Omega_i$ for $i \in \{\bullet, 0, 1, \dots, L\}$. For Lipschitz domains, and in particular for each Ω_i , there exists a unit normal vector field $\mathbf{n}_i \in L^{\infty}(\partial \Omega_i)$, $\mathbf{n}_i : \partial \Omega_i \to \mathbb{R}^d$, pointing towards the exterior of Ω_i .

The interface between two subdomains Ω_i and Ω_j is denoted by $\Gamma_{ij}:=\partial\Omega_i\cap\partial\Omega_j$. Moreover, we introduce the so-called skeleton $\Sigma:=\bigcup_{i=0}^L\partial\Omega_i$, the union of all boundaries of subdomains.

In our scattering model sources are given through an *incident wave*, coming from infinity and impinging on the scattering obstacle. We assume that the source field $U_{inc} \in$