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Abstract. In this paper, we present a new fourth-order upwinding embedded bound-
ary method (UEBM) over Cartesian grids, originally proposed in the Journal of Com-
putational Physics [190 (2003), pp. 159-183.] as a second-order method for treating
material interfaces for Maxwell’s equations. In addition to the idea of the UEBM to
evolve solutions at interfaces, we utilize the ghost fluid method to construct finite dif-
ference approximation of spatial derivatives at Cartesian grid points near the material
interfaces. As a result, Runge-Kutta type time discretization can be used for the semi-
discretized system to yield an overall fourth-order method, in contrast to the original
second-order UEBM based on a Lax-Wendroff type difference. The final scheme allows
time step sizes independent of the interface locations. Numerical examples are given
to demonstrate the fourth-order accuracy as well as the stability of the method. We
tested the scheme for several wave problems with various material interface locations,
including electromagnetic scattering of a plane wave incident on a planar boundary and
a two-dimensional electromagnetic application with an interface parallel to the y-axis.
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1 Introduction

The finite difference time domain (FDTD) Yee scheme, first introduced by Yee in 1966
[1] and later developed by Taflove and others [2], has been used for a broad range of
application problems in computational electromagnetics. The staggered Yee scheme has
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been demonstrated to be robust, efficient, and simple to implement. However, when
used to model curved objects or to solve Maxwell’s equations in media with material
interfaces, the Yee scheme requires locally conforming meshes for the irregular boundaries
or the material interfaces. Otherwise, it will reduce to at best first-order accuracy and
may produce locally non-convergent results [3, 4]. Furthermore, for Maxwell’s equations
with discontinuous coefficients, the Yee scheme might not be able to capture the possible
discontinuity of the solution across the interfaces.

A number of finite difference methods have been proposed in the past for modeling
time-domain Maxwell’s equations with curved material interfaces. The usual and straight-
forward approach is to introduce appropriate local modifications into the Yee scheme but
still keep the staggered grid [4, 5]. Recently, there are some studies of high-order em-
bedded FDTD schemes for time-domain Maxwell’s equations with material interfaces,
including the non-dissipative staggered fourth-order accurate explicit method and the
staggered fourth-order compact implicit method by Yefet et al [6, 7], and the explicit
fourth-order staggered method and the explicit fourth-order orthogonal curvilinear stag-
gered grid method by Xie et al [8, 9]. Also, high-order FDTD methods via hierarchical
implicit derivative matching are presented in [10].

In this paper, we present a new fourth-order upwinding embedded boundary method
(UEBM) over Cartesian grids, originally proposed in [11] as a second-order method for
treating material interfaces for Maxwell’s equations. In addition to the idea of the UEBM
to evolve solutions at the interfaces, we utilize the ghost fluid method to construct finite
difference approximation of spatial derivatives at Cartesian grid points near the mate-
rial interfaces. As a result, Runge-Kutta type time discretization can be used for the
semi-discretized system to yield an overall fourth-order method, in contrast to the original
second-order method based on a Lax-Wendroff type difference. The fourth-order method
still uses a simple Cartesian grid and a central difference scheme for mesh points away from
the interfaces. Solutions at both sides of the interfaces are calculated with an upwinding
strategy while preserving the possible physical jump conditions. Previous numerical meth-
ods making use of Cartesian grids for the approximation of one-dimensional hyperbolic
equations could also be found in [12–14].

The ghost fluid method (GFM) was originally designed to treat contact discontinuities
in the inviscid Euler equations in [15], and since then it has been generalized to handle
irregular boundaries in a variety of problems [16–28]. For examples, with the use of
the so-called ghost cells (based on the GFM), Gibou et al proposed in [20] a second-
order accurate finite difference method for Poisson equations, and most recently in [21]
a fourth-order accurate finite difference discretization for the Laplace and heat equations
on irregular domains with Dirichlet boundary conditions on the irregular interfaces. For
second-order wave equations, by using ghost points on either side of the interfaces, Kreiss
et al proposed several second-order embedded boundary methods with Dirichlet boundary
condition [25, 26], Neumann boundary condition [27], and jump conditions [28] on the
irregular interfaces, respectively.

In this paper, we shall combine the GFM with the UEBM to derive high-order Carte-


