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Abstract. This paper systematically compares the numerical implementation and com-
putational cost between the Fourier spectral iterative perturbation method (FSIPM)
and the finite element method (FEM) in solving partial differential equilibrium equa-
tions with inhomogeneous material coefficients and eigen-fields (e.g., stress-free strain
and spontaneous electric polarization) involved in phase-field models. Four bench-
mark numerical examples, including inhomogeneous elastic, electrostatic, and steady-
state heat conduction problems demonstrate that (1) the FSIPM rigorously requires
uniform hexahedral (3D) and quadrilateral (2D) mesh and periodic boundary condi-
tions for numerical implementation while the FEM permits arbitrary mesh and bound-
ary conditions; (2) the FSIPM solutions are comparable to their FEM counterparts, and
both of them agree with the analytic solutions, (3) the FSIPM is much faster in solving
equilibrium equations than the FEM to achieve the accurate solutions, thus exhibiting
a greater potential for large-scale 3D computations.
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1 Introduction

The phase-field method, as a powerful computational approach, has been widely ap-
plied to model and predict microstructure evolution during various material processes
[10], for instance, martensitic phase transformations [1, 13, 29], electromigration [2, 21],
grain growth [11, 15], solidification [19, 22], and so forth. In the phase-field method, the
mesoscale morphology and microstructure in materials are described by a set of con-
tinuous phase-field variables, including the conserved field variables {c1,c2,··· ,cn} and
non-conserved field variables {η1,η2,··· ,ηm} that represent the compositional and struc-
tural differences in the microstructure, respectively. The corresponding total free energy
is given by:
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The first volume integral in Eq. (1.1) represents the local contribution from short-range
interactions to the free energy, including the bulk free energy f , as well as the gradient
energy terms,∑n

i=1αi(∇ci)
2+∑

3
i=1∑

3
j=1 ∑

p
k=1 βij∇iηk∇jηk that describe the inhomogeneity

at interfaces. αi and βij are the gradient energy coefficients. The second volume inte-
gral in Eq. (1.1) represents the energy contribution from long-range interactions, such as
elastic interactions and electrostatic interactions, which are represented by G(r−r’). The
evolution of the microstructure is governed by the Cahn-Hilliard diffusion equation [4]
(Eq. (1.2)), and/or the Allen-Cahn relaxation equation [5] (Eq. (1.3)) with a given total
free energy F from Eq. (1.1):
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Mij and Lkl are the kinetic coefficients related to atomic and interfacial mobility, respec-
tively.

The formulation of the free energy densities in Eq. (1.1) is the key to the construc-
tion of phase-field models. The short-range chemical interactions (the first volume inte-
gral in Eq. (1.1)), once formulated, are explicit with respect to field variables and their
driving forces (the variational derivatives with respect to field variables) can be directly
obtained. The long-range interactions, however, are implicit with respect to field vari-
ables; additional constraints for long-range interactions, i.e., long-range equilibria, are
required. Typically, the microstructure inhomogeneity imposes a “source term”, as a
function of field variables, to the long-range interaction fields, and correspondingly, the
long-range interaction fields respond to this “source term” to establish the long-range


