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Abstract. In this paper we consider PDE-constrained optimization problems which in-
corporate an H1 regularization control term. We focus on a time-dependent PDE, and
consider both distributed and boundary control. The problems we consider include
bound constraints on the state, and we use a Moreau-Yosida penalty function to han-
dle this. We propose Krylov solvers and Schur complement preconditioning strategies
for the different problems and illustrate their performance with numerical examples.
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1 Introduction

As methods for numerically solving partial differential equations (PDEs) become more
accurate and well-understood, some focus has shifted to the development of numerical
methods for optimization problems with PDE constraints: see, e.g., [41,44,69] and the ref-
erences mentioned therein. The canonical PDE-constrained optimization problem takes
a given desired state, ȳ, and finds a state, y, and a control, u, to minimize the functional

‖y− ȳ‖2
Y+

β

2
R(u) (1.1)
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subject to the constraints

Ay=u,

ua≤u≤ub,

ya ≤y≤yb ,

where ‖·‖Y is some norm and R(u) is a regularization functional. We are free to choose
both the norm and the regularization functional here; appropriate choices often depend
on the properties of the underlying application. In the description above A denotes a PDE
with appropriate boundary conditions and β denotes a scalar regularization parameter.
The focus of this manuscript is regularization based on the H1 norm of the control, which
we motivate below.

The simplest choice of R(u) is ‖u‖2
L2(Ω), where Ω denotes the domain on which the

PDE is posed. This case has been well-studied in the literature, both from a theoreti-
cal and algorithmic perspective. However, the requirements of real-world problems has
necessitated the application of alternative regularization terms.

One area where there has been much interest is in regularization using L1 norms,
see, e.g., the recent articles [12, 73]. A related norm is the total variation norm R(u) =
‖∇u‖L1(Ω), has also aroused excitement recently – see e.g. [14, 59] and the references
therein. These L1 norms have the benefit that they allow discontinuous controls, which
can be important in certain applications.

For certain applications it is desirable to have a smooth control – for this reason the
H1 semi-norm, R(u) = ‖∇u‖2

L2(Ω), has long been studied in the context of parameter-

estimation problems [10, 46, 76], image-deblurring [13, 17, 48], image reconstruction [49],
and flow control [18, 34], for example. Recently van den Doel, Ascher and Haber [19]
argued that this norm can be a superior choice to its L1-based cousin, total variation, for
problems with particularly noisy data due to the smooth nature of controls which arise.
The test problems in PDE constrained optimization by Haber and Hanson [31], which
were designed to get academics solving problems more in-line with the needs of the real-
world, suggest a regularization functional of the form R(u)=‖u‖2

L2(Ω)+α‖∇u‖2
L2(Ω) for a

given α. Indeed, this form of regularization is commonly used in the ill-posed and inverse
problem communities. Another example of a field where the standard L2 regularization
may not be appropriate is flow control – see, e.g., Gunzburger [28, Chapter 4].

At the heart of many techniques for solving the optimization problem, whether it is
a linear problem or the linearization of a non-linear problem, lies the solution of a linear
system [35,41,44,70]. These systems are very often so-called saddle point matrices [4,23],
which have the form

A=

[
A BT

B 0

]
, (1.2)

where A represents the misfit and regularization terms in (1.1) and B represents the
PDE constraint. In the systems we consider in this paper, A is symmetric positive semi-
definite. Such saddle point matrices are invertible if B has full rank and ker(A)∩ker(B)=


