
Commun. Comput. Phys.
doi: 10.4208/cicp.060314.120215a

Vol. 18, No. 1, pp. 167-179
July 2015

On the “Preconditioning” Function Used in Planewave

DFT Calculations and its Generalization

Yunkai Zhou1,∗, James R. Chelikowsky2, Xingyu Gao3 and
Aihui Zhou4

1 Department of Mathematics, Southern Methodist University, Dallas, TX 75275,
USA.
2 Center for Computational Materials, Institute for Computational Engineering and
Science, and Departments of Physics and Chemical Engineering, University of Texas,
Austin, TX 78712, USA.
3 HPCC, Institute of Applied Physics and Computational Mathematics, Beijing, 100094,
China.
4 LSEC, Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing 100190, China.

Received 6 March 2014; Accepted (in revised version) 12 February 2015

Abstract. The Teter, Payne, and Allan “preconditioning” function plays a significant
role in planewave DFT calculations. This function is often called the TPA precondi-
tioner. We present a detailed study of this “preconditioning” function. We develop a
general formula that can readily generate a class of “preconditioning” functions. These
functions have higher order approximation accuracy and fulfill the two essential “pre-
conditioning” purposes as required in planewave DFT calculations. Our general class
of functions are expected to have applications in other areas.
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1 Introduction

Density functional theory (DFT) [6, 9] has profound impacts on atomic scale material
studies, including materials processing and design. There are now quite extensive lit-
erature on DFT. Readers interested in the role of DFT within molecular and condensed
matter physics may consult a few recent books e.g. [3, 8, 12, 15].

∗Corresponding author. Email addresses: yzhou@smu.edu (Y. Zhou), jrc@ices.utexas.edu (J. R. Che-
likowsky), gao xingyu@iapcm.ac.cn (X. Gao), azhou@lsec.cc.ac.cn (A. Zhou)

http://www.global-sci.com/ 167 ©2015 Global-Science Press



168 Y. Zhou et al. / Commun. Comput. Phys., 18 (2015), pp. 167-179

One major approach for DFT calculations is by using planewave basis expan-
sion. There are several influential planewave DFT software, including the open source
QUANTUM- ESPRESSO [4, 18], ABINIT [5, 17], and the commercial VASP [10, 19]. Read-
ers interested in learning planewave DFT calculations may start with the nice KSSOLV
package written in Matlab [21].

In DFT calculations for atomic scale study of materials, the major computational cost
is usually spent on solving the Kohn-Sham equation. This equation is a nonlinear eigen-
value problem, which represents certain simplification of the Schrödinger equation to
make it more numerically tractable. A self-consistency loop is utilized to address the non-
linearity, which means a sequence of linearized eigenvalue problems need to be solved
until self-consistency is reached [12, 15]. Therefore, eigensolvers used in the DFT pack-
ages can be of crucial importance for the efficiency of the DFT calculations.

For the planewave DFT packages ( [4,5,10,21] and others), two of the essential eigen-
solvers implemented are the preconditioned CG method and the preconditioned David-
son method. The efficiency of these eigensolvers is closely related to the following “pre-
conditioning” function,

K(x)=
27+18x+12x2+8x3

27+18x+12x2+8x3+16x4
. (1.1)

However, few studies of this function appear in the planewave DFT literature, except
that most papers utilizing a preconditioned eigensolver in the planewave setting would
refer to the work of Teter, Payne and Allan [16]. The function K(x) was first proposed
in [16] and is now known as the TPA preconditioner.

A known property of K(x) is that its derivatives up to order 3 at x= 0 are all zeros.
At first sight the K(x) appears intriguing. One may wonder why K(x) has to be in the
form (1.1). Do the coefficients as listed in (1.1) lead to the property that K′(0)=K′′(0)=
K′′′(0)=0? Can the coefficients be modified?

In this note we develop a generalization of K(x). Besides readily answering the previ-
ously mentioned questions about K(x), our generalization provides formulas with higher
accuracy to fulfill the purposes of “preconditioning” in the planewave setting.

2 Up to order n consecutive zero derivatives at x=0

Our first finding is that there is no particular mystery related to K′(0)=K′′(0)=K′′′(0)=0,
this property actually is independent of the coefficients listed in (1.1). In fact, it is a special
case of the general result we present below.

We first define pn(x) and gn(x) as

pn(x) := c0+c1x+c2x2+···+cnxn, (2.1)

gn(x) :=
pn(x)

pn(x)+cn+1xn+1
. (2.2)


