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Abstract. We investigate several robust preconditioners for solving the saddle-point
linear systems that arise from spatial discretization of unsteady and steady variable-
coefficient Stokes equations on a uniform staggered grid. Building on the success of
using the classical projection method as a preconditioner for the coupled velocity-
pressure system [B. E. Griffith, J. Comp. Phys., 228 (2009), pp. 7565–7595], as well as
established techniques for steady and unsteady Stokes flow in the finite-element liter-
ature, we construct preconditioners that employ independent generalized Helmholtz
and Poisson solvers for the velocity and pressure subproblems. We demonstrate that
only a single cycle of a standard geometric multigrid algorithm serves as an effective
inexact solver for each of these subproblems. Contrary to traditional wisdom, we find
that the Stokes problem can be solved nearly as efficiently as the independent pres-
sure and velocity subproblems, making the overall cost of solving the Stokes system
comparable to the cost of classical projection or fractional step methods for incom-
pressible flow, even for steady flow and in the presence of large density and viscosity
contrasts. Two of the five preconditioners considered here are found to be robust to
GMRES restarts and to increasing problem size, making them suitable for large-scale
problems. Our work opens many possibilities for constructing novel unsplit temporal
integrators for finite-volume spatial discretizations of the equations of low Mach and
incompressible flow dynamics.
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1 Introduction

Many numerical methods for solving the time-dependent (unsteady) incompressible [1,
3, 24, 27] or low Mach number [14, 43] equations require the solution of a linear unsteady
Stokes flow subproblem. The linear steady Stokes problem is of particular interest for
low Reynolds number flows [26, 42] or flow in viscous boundary layers. In this work,
we investigate efficient linear solvers for the unsteady and steady Stokes equations in the
presence of variable density and viscosity. Specifically, we consider the coupled velocity-
pressure Stokes system [20, 49]

{
ρut+∇p=∇ ·τ(u)+ f ,

∇·u= g,
(1.1)

where ρ(r) is the density, u(r,t) is the velocity, p(r,t) is the pressure, f (r,t) is a force den-
sity, and τ(u) is the viscous stress tensor. A nonzero velocity-divergence g(r,t) arises,
for example, in low Mach number models because of compositional or temperature vari-
ations [43]. The viscous stress τ(u) is µ∇u for constant viscosity incompressible flow,
µ
[
∇u+(∇u)T

]
when g=0 (incompressible flow), and µ[∇u+(∇u)T]+(γ− 2

3 µ)(∇·u)I
when g 6=0, where µ(r,t) is the shear viscosity and γ(r,t) is the bulk viscosity. When the
inertial term is neglected, ρut = 0, (1.1) reduces to the time-independent (steady) Stokes
equations. In this work we consider periodic boundary conditions and physical bound-
ary conditions that involve velocity only, notably no-slip and free-slip physical bound-
aries†.

Spatial discretization of (1.1) can be carried out using standard finite-volume or finite-
element techniques. Applying the backward Euler scheme to solve the spatially-discret-
ized equations with time step size ∆t gives the following discrete system for the velocity
un+1 and the pressure pn+1 at the end of time step n,





ρ

(
un+1−un

∆t

)
+∇pn+1=∇·τ

(
un+1

)
+ f n+1,

∇·un+1= gn+1,

(1.2)

where f n+1 contains external forcing terms such as gravity and any explicitly-handled
terms such as, for example, advection. Similar linear systems are obtained with other
implicit and semi-implicit temporal discretizations [1, 3, 27]. In the limit ρ/∆t → 0, the
system (1.2) reduces to the steady Stokes equations. Here we will assume that the spatial
discretization is stable, more precisely, that the Stokes system (1.2) is “uniformly solv-
able” as the spatial discretization becomes finer, i.e., that a suitable measure of the con-
dition number of the Schur complement of (1.2) remains bounded as the grid spacing

†When the normal component of velocity is specified on the whole boundary of the computational domain
Ω, a compatibility condition

∫
∂Ω

u·ndS=
∫

Ω
gdr needs to be imposed.


