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Abstract. We develop a super-grid modeling technique for solving the elastic wave
equation in semi-bounded two- and three-dimensional spatial domains. In this method,
waves are slowed down and dissipated in sponge layers near the far-field boundaries.
Mathematically, this is equivalent to a coordinate mapping that transforms a very large
physical domain to a significantly smaller computational domain, where the elastic
wave equation is solved numerically on a regular grid. To damp out waves that be-
come poorly resolved because of the coordinate mapping, a high order artificial dissi-
pation operator is added in layers near the boundaries of the computational domain.
We prove by energy estimates that the super-grid modeling leads to a stable numerical
method with decreasing energy, which is valid for heterogeneous material properties
and a free surface boundary condition on one side of the domain. Our spatial dis-
cretization is based on a fourth order accurate finite difference method, which satisfies
the principle of summation by parts. We show that the discrete energy estimate holds
also when a centered finite difference stencil is combined with homogeneous Dirich-
let conditions at several ghost points outside of the far-field boundaries. Therefore,
the coefficients in the finite difference stencils need only be boundary modified near
the free surface. This allows for improved computational efficiency and significant
simplifications of the implementation of the proposed method in multi-dimensional
domains. Numerical experiments in three space dimensions show that the modeling
error from truncating the domain can be made very small by choosing a sufficiently
wide super-grid damping layer. The numerical accuracy is first evaluated against an-
alytical solutions of Lamb’s problem, where fourth order accuracy is observed with
a sixth order artificial dissipation. We then use successive grid refinements to study
the numerical accuracy in the more complicated motion due to a point moment tensor
source in a regularized layered material.
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1 Introduction

To numerically solve a time-dependent wave equation in an unbounded spatial domain,
it is necessary to truncate the domain and impose a far-field closure at, or near, the bound-
aries of the truncated domain. Numerous different approaches have been suggested, see
for example [4, 6,16]. The perfectly matched layer (PML) technique, originally proposed
by Berenger [3] and later improved by many others, has been very successful for electro-
magnetic wave simulations. Unfortunately, the PML technique sometimes suffers from
stability problems when applied to the elastic wave equation, where free surface bound-
aries and material discontinuities can form wave guides in which the solution of the PML
system becomes unstable [18]. The PML system is also known to exhibit stability prob-
lems for some anisotropic wave equations [2].

Similar to the PML technique, the super-grid method [1] modifies the original wave
equation in layers near the boundary of the computational domain. The PML system
is defined by Fourier transforming the original wave equation in time and applying a
frequency-dependent complex-valued coordinate transformation in the layers. Addi-
tional dependent variables, governed by additional differential equations, must be in-
troduced to define the PML system in the time domain. In comparison, the super-grid
method is based on applying a real-valued coordinate stretching in the layers, where also
artificial dissipation is added. The super-grid method does not rely on additional depen-
dent variables, and is therefore more straight forward to implement. In the layers near
the boundary, the PML method damps the waves; in contrast, the super-grid method
both damps the waves and slows them down. The main advantage over the PML tech-
nique is that the solution of the wave equation with super-grid layers is energy stable, if
there is a corresponding energy estimate for the underlying wave equation.

In this article, we generalize the super-grid approach [1] to the elastic wave equation
in second order formulation. Motivated by applications from seismology and seismic ex-
ploration, we focus on half-plane or half-space domains, where a free surface boundary
condition must be satisfied on only one side of the domain. The half-space problem sub-
ject to a free surface condition permits surface waves. These waves only propagate along
the free surface and decay exponentially away from the surface. They are fundamentally
different from the longitudinal and transverse waves that travel through the volume of
the domain. Surface waves therefore constitute an additional type of wave that need to
be absorbed by the far-field closure.

We are primarily interested in cases where the solution is of a transient nature, be-
ing driven by initial data with compact support, or by a forcing function that only is
active (non-zero) for a limited time. Because of the artificial damping in the super-grid
layers, the solution becomes very small on the outside of the layers. For this reason,
it is natural to impose homogeneous Dirichlet conditions at the super-grid boundaries,
which truncate the computational domain. In this paper, we develop a finite difference
method where fourth order accurate summation by parts (SBP) operators [17] are com-
bined with centered fourth order accurate finite difference formulas in the interior of the



