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Abstract. In this work, we are concerned with a time-splitting Fourier pseudospectral
(TSFP) discretization for the Klein-Gordon (KG) equation, involving a dimensionless
parameter ε∈ (0,1]. In the nonrelativistic limit regime, the small ε produces high oscil-
lations in exact solutions with wavelength of O(ε2) in time. The key idea behind the
TSFP is to apply a time-splitting integrator to an equivalent first-order system in time,
with both the nonlinear and linear subproblems exactly integrable in time and, re-
spectively, Fourier frequency spaces. The method is fully explicit and time reversible.
Moreover, we establish rigorously the optimal error bounds of a second-order TSFP
for fixed ε=O(1), thanks to an observation that the scheme coincides with a type of
trigonometric integrator. As the second task, numerical studies are carried out, with
special efforts made to applying the TSFP in the nonrelativistic limit regime, which are
geared towards understanding its temporal resolution capacity and meshing strategy
for O(ε2)-oscillatory solutions when 0< ε ≪ 1. It suggests that the method has uni-
form spectral accuracy in space, and an asymptotic O(ε−2∆t2) temporal discretization
error bound (∆t refers to time step). On the other hand, the temporal error bounds for
most trigonometric integrators, such as the well-established Gautschi-type integrator
in [6], are O(ε−4∆t2). Thus, our method offers much better approximations than the
Gautschi-type integrator in the highly oscillatory regime. These results, either rigorous
or numerical, are valid for a splitting scheme applied to the classical relativistic NLS
reformulation as well.
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1 Introduction

The relativistic Klein-Gordon (KG) equation in d-dimensions (d = 1,2,3) reads, under a
proper non-dimensionalization [6, 26–28, 30, 31, 43],

ε2∂ttu(x,t)−∆u(x,t)+
1

ε2
u(x,t)+ f (u(x,t))=0, x∈R

d, t>0, (1.1a)

with initial conditions:

u(x,0)=φ1(x), ∂tu(x,0)=
1

ε2
φ2(x), x∈R

d. (1.1b)

The KG equation is also known as the relativistic version of the Schrödinger equation
and used to describe the motion of a spinless particle; see, e.g. [13, 34] for its derivation.
In this work, u= u(x,t) is considered to be a real-valued scalar field, the dimensionless
parameter ε> 0 is inversely proportional to the speed of light, φ1 and φ2 are two given
real-valued functions independent of ε. f (·) is a real-valued function describing the non-
linear interaction, independent of ε and satisfying f (0)=0. The KG equation (1.1) is time
symmetry or time reversible and conserves the energy, provided that u(·,t)∈H1(Rd) and
∂tu(·,t)∈L2(Rd),

E(t) :=
∫

Rd

[
ε2(∂tu(x,t))2+|∇u(x,t)|2+ 1

ε2
(u(x,t))2+F(u(x,t))

]
dx

≡
∫

Rd

[
1

ε2
(φ2(x))

2+|∇φ1(x)|2+
1

ε2
(φ1(x))

2+F(φ1(x))

]
dx :=E(0), t≥0, (1.2)

with F(u)=2
∫ u

0 f (ρ)dρ, u∈R.
When ε>0 in (1.1) is fixed, e.g. ε=1, corresponding to the O(1)-speed of light regime,

a surge of analysis and numerics results have been reported in literatures. For instance,
the Cauchy problem was considered in [2, 10, 23, 24, 38]. In particular, global existence
of solutions was established in [10] for F(u)≥ 0 (defocusing case); and possible blow-
up was shown in [2] for F(u)< 0 (focusing case). For more results in this regime, we
refer the readers to [29, 33, 36, 40] and references given therein. Along the numerical as-
pect, many numerical schemes have been proposed in literatures. The classical numerical
methods are the standard finite difference time domain methods including energy con-
servative, semi-implicit and explicit finite difference discretizations [1, 15, 25, 32, 41] and
some other approaches such as finite element or spectral discretization in space coupled
with appropriate time integrator, like standard finite difference or Gautschi-type expo-
nential integrator [6,12,14,42]. For comparisons of different numerical methods, we refer
the readers to [6, 22, 32].

Over the past decade, more attentions have been paid to the regime 0< ε≪1 in (1.1),
which corresponds to the nonrelativistic limit or the speed of light goes to infinity. In
this regime, the analysis and efficient simulation are mathematically rather complicated


