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Abstract. In this work, we concern with the numerical comparison between different
kinds of design points in least square (LS) approach on polynomial spaces. Such a
topic is motivated by uncertainty quantification (UQ). Three kinds of design points are
considered, which are the Sparse Grid (SG) points, the Monte Carlo (MC) points and
the Quasi Monte Carlo (QMC) points. We focus on three aspects during the compari-
son: (i) the convergence properties; (ii) the stability, i.e. the properties of the resulting
condition number of the design matrix; (iii) the robustness when numerical noises
are present in function values. Several classical high dimensional functions together
with a random ODE model are tested. It is shown numerically that (i) neither the MC
sampling nor the QMC sampling introduce the low convergence rate, namely, the ap-
proach achieves high order convergence rate for all cases provided that the underlying
functions admit certain regularity and enough design points are used; (ii)The use of SG
points admits better convergence properties only for very low dimensional problems
(say d ≤ 2); (iii)The QMC points, being deterministic, seem to be a good choice for
higher dimensional problems not only for better convergence properties but also in
the stability point of view.
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1 Introduction

In recent years, there has been a growing need for including uncertainty in mathematical
models and quantify its effect on given outputs of interest used in decision making. In
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general, a probabilistic setting can be used to include these uncertainties in mathemat-
ical models. In such framework, the input data are modeled as random variables, or
more generally, as random fields with a given correlation structure. Thus, the goal of the
mathematical and computational analysis becomes the prediction of statistical moments
of the solution or statistics of some quantities of physical interest of the solution, given
the probability distribution of the input random data. Examples of quantities of interest
could be the mean or the variance of the exact solution, the solution values in a given
region, etc. This is the so called Uncertainty Quantification (UQ).

A fundamental problems in UQ is to approximate a multivariate function Z =
f (x,Y1,Y2,··· ,YN) with random parameters {Yi}N

i=1, which might be a solution resulting
from a stochastic PDE problem or other complex models. Stochastic modeling methods
for uncertainty quantification are being well developed in recent years. A traditional
approach is the Monte Carlo (MC) method [7]. In MC method, one first generates a num-
ber of random realizations for the prescribed random inputs and then utilizes existing
deterministic solvers for each realization. Although the convergence rate of Monte Carlo
method is relatively slow (converges asymptotically at a rate of 1√

K
with K realizations), it

is independent of the dimensionality of the random space, i.e., independent of the num-
ber of random variables used to characterize the random inputs. Significant advances
have been made in improving the efficiency of Monte Carlo schemes during the past
years. Stochastic collocation (SC) [17,18,23,24] method is another non-intrusive method.
Like MC method, the SC method can be easily implemented and leads naturally to the
solution of uncoupled deterministic problems, even in presence of input data which de-
pend nonlinearly on the driving random variables. When the number of input random
variables is small, the SC method is a very effective numerical tool. However, in many
cases, a large number of collocation points are still needed to get a good convergence rate.

One of the most popular intrusive methods is the generalized polynomial chaos (gPC)
methods [10, 25], which are the generalizations of the Wiener-Hermite polynomial chaos
expansion developed in [22]. Compared to the SC method, the gPC methods need rel-
atively smaller number of degree of freedom, and such methods also exhibit fast con-
vergence rates with increasing order of the expansions, provided that solutions are suf-
ficiently smooth with respect to the random variables. However, the resulting set of de-
terministic equations is often coupled, thus, care is needed to design efficient and robust
solver, and furthermore, the form of the resulting equations can become very complicated
if the underlying differential equations have nontrivial and nonlinear forms [2, 28].

To efficiently build such a gPC approximation, we consider in this work the lease
square projection onto the polynomial spaces. The LS approach is actually a combi-
nation of the SC method and gPC method. It sakes a polynomial approximation for
the unknown solution while using collocation points to evaluate the expansion coeffi-
cients. Such an idea has been used by many researchers and been given several different
names [1,5,6,12,13], to name a few. To assure the well-posedness, the number of samples
drawn from the input distribution is typically taken to be 2 to 3 times the dimension of
the polynomial space.


