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Abstract. We present new large time step methods for the shallow water flows in the
low Froude number limit. In order to take into account multiscale phenomena that typ-
ically appear in geophysical flows nonlinear fluxes are split into a linear part governing
the gravitational waves and the nonlinear advection. We propose to approximate fast
linear waves implicitly in time and in space by means of a genuinely multidimensional
evolution operator. On the other hand, we approximate nonlinear advection part ex-
plicitly in time and in space by means of the method of characteristics or some standard
numerical flux function. Time integration is realized by the implicit-explicit (IMEX)
method. We apply the IMEX Euler scheme, two step Runge Kutta Cranck Nicolson
scheme, as well as the semi-implicit BDF scheme and prove their asymptotic preserv-
ing property in the low Froude number limit. Numerical experiments demonstrate
stability, accuracy and robustness of these new large time step finite volume schemes
with respect to small Froude number.
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1 Introduction

In oceanography, meteorology or river flow engineering shallow water models are used
to describe a thin layer of constant density fluid in hydrostatic balance bounded from
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below by a rigid surface, see, e.g., [8, 11, 22, 45]. The shallow water equations (SWE)
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describe the motion of shallow water, where h is the water depth, u=(u,v); u,v are the
velocities in x- and y-direction and b̃ is time independent bottom topography. Further,

ε:=ure f /cre f =ure f /
√

ghre f is the reference Froude number, g is the gravitational constant,

ure f and hre f are the problem dependent reference values for velocity and water depth,
respectively. System (1.1) is a hyperbolic balance law, which can be derived by integrating
the Navier-Stokes equations along the vertical axis [45].

Let us note that geophysical flows are typically perturbations of some underlying
equilibrium state. One possibility to take the loss of significance into account is to ap-
proximate just the perturbation of the equilibrium states [15, 34]. For the shallow water
equations (1.1) the so-called lake at rest solution h+b=const., u=0=v is the equilibrium
state.

We would like to point out, that in literature there are already several approaches that
describe how to design a numerical scheme which satisfies some important equilibrium
conditions, such as the lake at rest state or the geostrophic equilibrium, exactly for given
discrete data. Such schemes are called well-balanced schemes or schemes satisfying the
so-called C-property, we refer a reader to, e.g., [4,7,10,16,24–27,32] and to [5], where the
C-property has been introduced firstly. We will discuss the question of well-balancing
more deeply in Sections 4.3 and 5 and show that our newly developed large time step
schemes are well-balanced for the lake at rest uniformly with respect to the Froude num-
ber ε.

Now, we introduce the following variable transformation w=(z,m,n) :=(h+b,hu,hv).
Here z is the perturbation of the constant water level H=h+ b̃ and b= b̃−RBC<0 with a
problem defined relative bottom topography constant RBC. We should also note that an
analogous variable transformation has been already used in [24, 26, 27, 41, 42]. The only
difference in our case is that we introduce explicitly a “shift” of the coordinate system in
the vertical direction by a suitable constant denoted by RBC in order to obtain a still water
level to be zero. Consequently, we aim to have the perturbation z to be a small positive or
negative value. Note that by this transformation we obtain bottom topography function
b < 0. System (1.1) can be now rewritten in the non-dimensional form using the new
variables z,m,n
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In geophysical problems low Froude number shallow water flows typically appear,
cf. [22, 33, 45]. This means that the advection speed ure f is much smaller then the speed


