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Abstract. A weak Galerkin (WG) method is introduced and numerically tested for the
Helmholtz equation. This method is flexible by using discontinuous piecewise poly-
nomials and retains the mass conservation property. At the same time, the WG finite
element formulation is symmetric and parameter free. Several test scenarios are de-
signed for a numerical investigation on the accuracy, convergence, and robustness of
the WG method in both inhomogeneous and homogeneous media over convex and
non-convex domains. Challenging problems with high wave numbers are also exam-
ined. Our numerical experiments indicate that the weak Galerkin is a finite element
technique that is easy to implement, and provides very accurate and robust numerical
solutions for the Helmholtz problem with high wave numbers.
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1 Introduction

We consider the Helmholtz equation of the form

−∇·(d∇u)−k2u= f in Ω, (1.1a)

∇u·n−iku= g on ∂Ω, (1.1b)
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where k> 0 is the wave number, f ∈ L2(Ω) represents a harmonic source, g∈ L2(∂Ω) is
a given data function, and d = d(x,y)> 0 is a spatial function describing the dielectric
properties of the medium. Here Ω is a polygonal or polyhedral domain in R

d (d=2,3).
Under the assumption that the time-harmonic behavior is assumed, the Helmholtz

equation (1.1a) governs many macroscopic wave phenomena in the frequency domain
including wave propagation, guiding, radiation and scattering. The numerical solution
to the Helmholtz equation plays a vital role in a wide range of applications in electromag-
netics, optics, and acoustics, such as antenna analysis and synthesis, radar cross section
calculation, simulation of ground or surface penetrating radar, design of optoelectronic
devices, acoustic noise control, and seismic wave propagation. However, it remains a
challenge to design robust and efficient numerical algorithms for the Helmholtz equation,
especially when large wave numbers or highly oscillatory solutions are involved [37].

For the Helmholtz problem (1.1a)-(1.1b), the corresponding variational form is given
by seeking u∈H1(Ω) satisfying

(d∇u,∇v)−k2(u,v)+ik〈u,v〉∂Ω =( f ,v)+〈g,v〉∂Ω, ∀v∈H1(Ω), (1.2)

where (v,w) =
∫

Ω
vwdx and 〈v,w〉∂Ω =

∫

∂Ω
vwds. In a classic finite element procedure,

continuous polynomials are used to approximate the true solution u. In many situa-
tions, the use of discontinuous functions in the finite element approximation often pro-
vides the methods with much needed flexibility to handle more complicated practical
problems. However, for discontinuous polynomials, the strong gradient ∇ in (1.2) is no
longer meaningful. Recently developed weak Galerkin finite element methods [33,38,39]
provide means to solve this difficulty by replacing the differential operators by the weak
forms as distributions for discontinuous approximating functions.

Weak Galerkin (WG) methods refer to general finite element techniques for partial
differential equations and were first introduced and analyzed in [33] for second order
elliptic equations. Through rigorous error analysis, optimal order of convergence of the
WG solution in both discrete H1 norm and L2 norm is established under minimum reg-
ularity assumptions in [33]. The mixed weak Galerkin finite element method is studied
in [34]. The WG methods are by design using discontinuous approximating functions.

In this paper, we will apply WG finite element methods [33, 38, 39] to the Helmholtz
equation. The WG finite element approximation to (1.2) can be derived naturally by
simply replacing the differential operator gradient ∇ in (1.2) by a weak gradient ∇w:
find uh∈Vh such that for all vh ∈Vh we have

(d∇wuh,∇wvh)−k2(u0,v0)+ik〈ub,vb〉∂Ω=( f ,v0)+〈g,vb〉∂Ω, (1.3)

where u0 and ub represent the values of uh in the interior and the boundary of the triangle
respectively. The weak gradient ∇w will be defined precisely in the next section. We
note that the weak Galerkin finite element formulation (1.3) is simple, symmetric and
parameter free.

To fully explore the potential of the WG finite element formulation (1.3), we will in-
vestigate its performance for solving the Helmholtz problems with large wave numbers.


