Vol. **14**, No. 1, pp. 174-185 July 2013

First-Principle Calculations of Half-Metallic Double Perovskite $La_2BB'O_6$ (B, B' = 3d transition metal)

Y. P. Liu¹, S. H. Chen², H. R. Fuh³ and Y. K. Wang^{4,*}

¹ Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.

² Institute of Physics, Academia Sinica, Taipei 115, Taiwan.

³ Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan.

⁴ Center for General Education and Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan.

Received 19 March 2012; Accepted (in revised version) 19 July 2012

Communicated by Michel A. Van Hove

Available online 30 October 2012

Abstract. In this paper, we present calculations based on density functional theory using generalized gradient approximation (GGA) in double perovskite structure La₂*BB*[']O₆ (*B*, *B*['] = 3*d* transition metal) out of 45 (C_2^{10}) combinational possibilities. Considering 4 types of magnetic states, namely, ferromagnetic (FM), ferrimagnetic (FiM), antiferromagnetics (AF), and nonmagnetic (NM) with full structure optimization, 13 possible surviving, stable FM/FiM-HM materials containing 6 FM-HM materials (La₂ScNiO₆, La₂CrCoO₆, La₂CrNiO₆, La₂VScO₆, La₂VZnO₆, and La₂VNiO₆) and 7 FiM-HM materials (La₂VFeO₆, La₂ZrCoO₆, La₂ZnCoO₆, La₂TiCoO₆, La₂CrZnO₆, La₂CrMnO₆, La₂ScFeO₆, and La₂TiMnO₆) are found. Considering the correlation effect (GGA+U), there are 6 possible half-metallic stable, surviving (HM) materials containing 3 FM-HM materials (La₂ScNiO₆, La₂CrCoO₆, La₂CrCoO₆, and La₂CrNiO₆) and 3 FiM-HM materials (La₂VFeO₆, La₂CrCoO₆, and La₂CrNiO₆).

PACS: 75.10.Lp, 71.20.-b, 75.30.-m, 75.50.Ee

Key words: Half-metallic materials, double perovskites structure, first-principle density functional theory.

1 Introduction

In ordered double perovskites denoted as $A_2BB'O_6$ (A=alkaline-earth or rare-earth ion, *B* and *B*'=transition metal ion), the differences in the valance and size between the *B*

http://www.global-sci.com/

©2013 Global-Science Press

^{*}Corresponding author. *Email addresses:* viva.guitarra@gmail.com (Y. P. Liu), chen_shao_hua197@yahoo. com.tw (S. H. Chen), c4491141@gmail.com (H. R. Fuh), kant@ntnu.edu.tw (Y. K. Wang)

and B' cations are crucial for controlling the physical properties [1, 2]. Among them, Sr₂FeMoO₆ [3] has been discovered to possess colossal magneto resistance (CMR) at room temperature. The high transition temperature T_c and low field magnetoresistance indicate half-metallic (HM) behavior in this compound. In HM materials, there is a well-defined gap in the majority channel and a metallic behavior in the minor spin channel. Thus, HM materials have three properties: (1) quantization of the magnetic moment; (2) 100% spin polarization at the Fermi level; (3) zero spin susceptibility. Due to their single-spin charge carriers, HM materials can be used in creating computer memories, magnetic recordings, and so on.

This work searches for new HM materials in all the 45 (C_2^{10}) double pervoskite structure of $La_23d3d'O_6$ series, where 3d3d' pairs are combinations of all 3d transition elements. The research is based on the first-principle generalized gradient approximation (GGA) calculations, with the consideration of four types of magnetic states, namely, ferromagnetic (FM), ferrimagnetic (FiM), antiferromagnetics (AF), and nonmagnetic (NM), in ideal cubic structure ($Fm\bar{3}m$, No. 225). Up to 22 possible compounds were obtained from the first round of filtering calculation. After the structural optimization process and considering the energy difference between the 4 magnetic states, 13 possible FM/FiM-HM materials proved to be stable containing 6 FM-HM materials (La₂ScNiO₆, La₂CrCoO₆, La₂CrNiO₆, La₂VScO₆, La₂VZnO₆, and La₂VNiO₆) [27] and 7 FiM-HM materials (La₂VFeO₆, La₂ZnCoO₆, La₂TiCoO₆, La₂CrZnO₆, La₂CrMnO₆, La₂ScFeO₆, and La_2TiMnO_6). In transition metal oxides, the strong electron correlation systems need better description rather than GGA calculations. However, GGA calculations can be corrected using a strong-correlation correction called GGA(LDA)+U method. In the GGA+U process, U and J stand for Coulomb and exchange parameters, respectively, and the effective parameter $U_{eff} = U - J$ is adopted. In this paper, we used U instead of U_{eff} for simplicity. Our result matched that of a previous study, which indicates that La_2NiFeO_6 [4] and La_2ZnRuO_6 [5] are HM materials upon which La_2NiFeO_6 needs to base the GGA+U calculations on; La_2VMnO_6 [6] and La_2VCuO_6 [7,8] are half-metallic antiferromagnetics (HM-AFM) where La_2VMnO_6 needs to go through for full structural optimization calculation; and La2NiMnO6 [9-11] is a ferromagnetic insulator (FM-Is) material. Based on our result, La₂ScNiO₆, La₂CrCoO₆, and La₂CrNiO₆ are half-metallic ferromagnetic (FM-HM) compounds and La₂VFeO₆, La₂ZnCoO₆, and La₂TiCoO₆ are halfmetallic ferrimagnetic (FiM-HM) materials.

2 Computational method

The theoretical research was based on density functional theory (DFT) [12], and using GGA [13] to approach the exchange-correlation potential. The structural optimization (i.e., relaxation for both lattice constants and atomic positions) were carried out using the full-potential projector augmented wave (PAW) [14] method and the conjugate-gradient (CG) method as implemented in the VASP code [15, 16], which is fast and efficient. To