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Abstract. This paper summarizes the mathematical and numerical theories and com-
putational elements of the adaptive fast multipole Poisson-Boltzmann (AFMPB) solver.
We introduce and discuss the following components in order: the Poisson-Boltzmann
model, boundary integral equation reformulation, surface mesh generation, the node-
patch discretization approach, Krylov iterative methods, the new version of fast multi-
pole methods (FMMs), and a dynamic prioritization technique for scheduling parallel
operations. For each component, we also remark on feasible approaches for further
improvements in efficiency, accuracy and applicability of the AFMPB solver to large-
scale long-time molecular dynamics simulations. The potential of the solver is demon-
strated with preliminary numerical results.
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1 Introduction

In the past three decades, the Poisson-Boltzmann (PB) continuum electrostatic model has
been adopted in many simulation tools for theoretical studies of electrostatic interactions
between biomolecules such as proteins and DNAs in aqueous solutions. Various numeri-
cal techniques have been developed to solve the PB equations and help elucidate the elec-
trostatic role in many biological processes, such as enzymatic catalysis, molecular recog-
nition and bioregulation. Existing simulation packages or PB solvers use the finite differ-
ence method, such as in DelPhi [1], GRASP [2, 47], MEAD [13], UHBD [3, 46], PBEQ [35,
36], PB solver [32] in AMBER [18], ZAP [27] and MIBPB [62], or use the finite vol-
ume/multigrid method, such as in the Adaptive Poisson-Boltzmann Solver (APBS) [4].
In a circumstance where the linearized PB is applicable, the partial differential equations
can be reformulated into a set of surface integral equations (IEs) by using Green’s theo-
rem and potential theory. The unknowns in the IEs are located on the molecular surface
only, and the resulting discretized linear system can be solved efficiently and accurately
with certain fast convolution algorithms, in particular, the fast Fourier transform (FFT)
and the fast multipole method (FMM).

The main purpose of this paper is to introduce the adaptive fast multipole Poisson-
Boltzmann (AFMPB) solver, in the aspects of mathematical theories, numerical properties
and computational components. The numerical components of the AFMPB are mostly
based on previously published results, by some of the authors and other researchers. We
give a brief summary and provide certain references, not exhaustively, to the precursor
work. Certain computational components, especially for algorithmic parallelization and
parallel scheduling, are recently developed by the authors. We introduce them briefly. We
emphasize that even when each component is well studied and understood, a coherent
integration of these components still calls for special attention and efforts. The success
of a mathematical software is ultimately measured by its applicability and the extent of
its applications. The rest of the paper is organized into two sections. In Section 2, we
describe the PB model, the boundary integral equation (BIE) reformulation, the surface
mesh generation, a node-patch discretization approach, the Krylov subspace methods,
the new version of FMMs, and a dynamic prioritization technique for parallelization. We
comment on each topic certain feasible strategies or active efforts for further improve-
ments in efficiency and accuracy. In Section 3, we present numerical results from prelim-
inary experiments and demonstrate applicability and performance of the AFMPB solver.

2 Theoretical foundations and computational elements

2.1 Continuum Poisson-Boltzmann electrostatics model

The electrostatic force is considered to play an important role in the interactions and
dynamics of molecular systems in aqueous solution. In the Poisson equation model,
when the charge density that describes the electrostatic effects of the solvent outside the


