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Abstract. This paper concerns the numerical stability of an eikonal transformation
based splitting method which is highly effective and efficient for the numerical so-
lution of paraxial Helmholtz equation with a large wave number. Rigorous matrix
analysis is conducted in investigations and the oscillation-free computational proce-
dure is proven to be stable in an asymptotic sense. Simulated examples are given to
illustrate the conclusion.
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1 Introduction

Fast and accurate analysis of optical wave devices such as waveguides and couplers
have been crucial to the development of light integrated systems [4, 13]. Core parts of
such analysis often involve advanced computational procedures for investigating the
wave propagation characteristics of the particular system. While the beam propagation
method, which is based on fast Fourier transforms, has been popular in the study [7,8,17],
different finite difference schemes are also employed in the research. To improve the ac-
curacy of a numerical method used, a traditional approach is to increase the density of
the grid or decrease the mesh step sizes utilized [4, 8, 9]. With a uniform mesh and step
size, the cost for doing so may quickly become prohibitive if a high wave frequency is
encountered. Nonuniform mesh structures and step sizes, on the other hand, may offer
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certain advantages in the situation [9,15]. However, they are often cumbersome to imple-
ment in industrial applications [3, 13]. The issue of computational efficiency has become
increasingly important in certain applications, in particular in the development of highly
accurate, yet rapid numerical methods for solving paraxial, or parabolic, wave equations
in order to separate inaccuracies inherent in numerical methods from inaccuracies due to
paraxial wave approximations under modern laser configurations [12, 13, 16].

Consider a slowly varying envelope approximation of the light beam. A frequently
used paraxial optical wave model is the Helmholtz equation,

2iκ0l0Ez =Exx+Eyy+κ2
0[l

2(x,y,z)−l2
0 ]E, (x,y,z)∈D, (1.1)

where E is the electric field function of the light wave within a narrow cone, z is the beam
propagation direction, x,y are transverse directions perpendicular to the light, i=

√
−1,

κ0 is the wavenumber in free space, l0 is the reference refractive index and l(x,y,z) is
the cross section index profile [4, 7, 9]. The differential equation provides solutions that
describe the propagation of electromagnetic waves in the form of either paraboloidal
waves or Gaussian beams. Most lasers emit beams that take the latter form [4, 8]. The
paraxial wave equation (1.1) can be viewed as a simplification of Maxwell’s field equa-
tions [1, 8, 11, 13]. Without loss of generality, we set D={a< x<b, c<y<d, z> z0}.

Since the wave parameter κ=κ0l0 is large in optical applications, the field function E
is highly oscillatory. This may considerably impair our desire for a higher computational
efficiency as well as accuracy in a traditional way, since mesh steps cannot be unrealisti-
cally small [6, 14, 18].

This motivates the latest search for eikonal transformation based numerical methods.
The idea is straightforward. Let φ(x,y,z) and ψ(x,y,z) be sufficiently smooth real func-
tions satisfying conditions

|φz|≪κ|φ|, |φzz|≪κ2|φ|, (x,y,z)∈D. (1.2)

We then look for the solution of (1.1) in the form of

E(x,y,z)=φ(x,y,z)eiκψ(x,y,z), (x,y,z)∈D. (1.3)

In fact, functions φ and ψ are closely related to the amplitude and ray, or eikonal, func-
tions corresponding to the electric field E, respectively. The constraint (1.2) coincides with
the basic feature of paraxial waves, that is,

sinθ≈ θ, tanθ≈ θ,

where θ is the angle between the beam vector and optical axis [1, 8]. Transformations
similar to (1.3) have also been used frequently in Wentzel-Kramers-Brillouin (WKB), or
semiclassical, approximations in quantum physics.

The aim of this paper is not for a refinement of existing models, or a continue devel-
opment of new schemes. Instead, we will focus at the numerical stability of the latest


