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Abstract. Solving elasticity equations with interfaces is a challenging problem for most
existing methods. Nonetheless, it has wide applications in engineering and science.
An accurate and efficient method is desired. In this paper, an efficient non-traditional
finite element method with non-body-fitting grids is proposed to solve elasticity equa-
tions with interfaces. The main idea is to choose the test function basis to be the stan-
dard finite element basis independent of the interface and to choose the solution basis
to be piecewise linear satisfying the jump conditions across the interface. The resulting
linear system of equations is shown to be positive definite under certain assumptions.
Numerical experiments show that this method is second order accurate in the L∞ norm
for piecewise smooth solutions. More than 1.5th order accuracy is observed for solu-
tion with singularity (second derivative blows up) on the sharp-edged interface corner.
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1 Introduction

The importance of elasticity interface problems has been well recognized in a variety of
disciplines. However, designing highly efficient methods for these problems is a difficult
job, especially when the interface is not smooth.

Consider an open bounded domain Ω⊂Rd. Let Γ be an interface of co-dimension d−1,
which divides Ω into disjoint open subdomains, Ω− and Ω+, hence Ω = Ω−⋃

Ω+⋃

Γ.
Assume that the boundary ∂Ω and the boundary of each subdomain ∂Ω± are Lipschitz
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continuous as submanifolds. Since ∂Ω± are Lipschitz continuous, so is Γ. A unit normal
vector of Γ can be defined a.e. on Γ, see Section 1.5 in [10].

We seek solutions of the variable coefficient elliptic equation away from the interface
Γ given by

{

−∇·(β1(x)∇u1(x))−∇·(β2(x)∇u2(x))= f1(x)

−∇·(β3(x)∇u1(x))−∇·(β4(x)∇u2(x))= f2(x), x∈Ω\Γ,
(1.1)

in which x=(x1,··· ,xd) denotes the spatial variables and ∇ is the gradient operator. The
coefficient β(x) is assumed to be a d×d matrix that is uniformly elliptic on each disjoint
subdomain, Ω− and Ω+, and its components are continuously differentiable on each
disjoint subdomain, but they may be discontinuous across the interface Γ. The right-
hand side f (x) is assumed to lie in L2(Ω).

Given functions a and b along the interface Γ, we prescribe the jump conditions



















































[u1]Γ (x)≡u+
1 (x)−u−

1 (x)= a1(x),

[u2]Γ (x)≡u+
2 (x)−u−

2 (x)= a2(x),

n·(β+
1 (x)∇u+

1 (x)+β+
2 (x)∇u+

2 (x))

−n·(β−
1 (x)∇u−

1 (x)+β−
2 (x)∇u−

2 (x))=b1(x),

n·(β+
3 (x)∇u+

1 (x)+β+
4 (x)∇u+

2 (x))

−n·(β−
3 (x)∇u−

1 (x)+β−
4 (x)∇u−

2 (x))=b2(x).

(1.2)

The ”±” superscripts refer to limits taken from within the subdomains Ω±.
Finally, we prescribe boundary conditions

{

u1(x)= g1(x), x∈∂Ω,

u2(x)= g2(x), x∈∂Ω,
(1.3)

for a given function g on the boundary ∂Ω.
For simplicity, this paper discusses d = 2 case. The three dimensional d = 3 case is

under investigation. The setup of the problem is illustrated in Fig. 1.
An elasticity system can be solved by both finite difference or finite element method.

Due to the cross derivative term, usually the linear system of equations using the finite
element formulation is better conditioned compared with that obtained using a finite
difference discretization.

To solve the interface problem, first we need to generate a mesh. One approach is
to use a body fitted mesh coupled with a finite element discretization, see for example,
[1,3,5,6] for scalar elliptic partial differential equations. Recently, Cartesian meshes have
become popular especially for moving interface problems to overcome the cost in the
grid generation at every or every other time steps.


