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Abstract. The finite volume wave propagation method and the finite element Runge-
Kutta discontinuous Galerkin (RKDG) method are studied for applications to balance
laws describing plasma fluids. The plasma fluid equations explored are dispersive and
not dissipative. The physical dispersion introduced through the source terms leads to
the wide variety of plasma waves. The dispersive nature of the plasma fluid equations
explored separates the work in this paper from previous publications. The linearized
Euler equations with dispersive source terms are used as a model equation system to
compare the wave propagation and RKDG methods. The numerical methods are then
studied for applications of the full two-fluid plasma equations. The two-fluid equa-
tions describe the self-consistent evolution of electron and ion fluids in the presence
of electromagnetic fields. It is found that the wave propagation method, when run
at a CFL number of 1, is more accurate for equation systems that do not have dis-
parate characteristic speeds. However, if the oscillation frequency is large compared
to the frequency of information propagation, source splitting in the wave propagation
method may cause phase errors. The Runge-Kutta discontinuous Galerkin method
provides more accurate results for problems near steady-state as well as problems with
disparate characteristic speeds when using higher spatial orders.
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1 Introduction

There are a number of equation systems that are either hyperbolic or contain hyperbolic
parts. Homogeneous, hyperbolic equation systems are written as conservation laws of
the form [1, 2]

∂Q

∂t
+∇·F=0, (1.1)

where Q ∈ R
m represents the m conserved variables and F ∈ R

m×d represents fluxes in
d spatial directions. For all unit vectors ω ∈R

d the flux Jacobian, ∂(F·ω)/∂Q, has real
eigenvalues and a complete set of right eigenvectors. Some homogeneous, hyperbolic
equation systems include the Euler equations and magnetohydrodynamic (MHD) equa-
tions.

Inhomogeneous, hyperbolic equation systems are described by balance laws of the
form

∂Q

∂t
+∇·F=S, (1.2)

where S∈R
m represents the source terms. The source Jacobian for Eq. (1.2) is ∂S/∂Q.

The presence of real eigenvalues in the source Jacobian results in an equation system
that contains diffusive sources. The Navier-Stokes equations and the 10-moment fluid
equations [3] are examples of inhomogeneous, hyperbolic equation systems containing
diffusive source terms.

For inhomogeneous, hyperbolic equation systems described by Eq. (1.2), the presence
of imaginary eigenvalues in the source Jacobian results in an equation system that con-
tains dispersive sources. The two-fluid plasma model is a system of inhomogeneous, hy-
perbolic equations containing dispersive source terms. The dispersive source terms arise
from the physical properties of the plasma medium. Dispersive source terms present
a unique challenge for numerical algorithms because low-order, explicit-time-stepping
schemes can be unstable when applied to the wave equation leading to numerical disper-
sion [4]. The physical dispersion can be difficult for numerical schemes to capture and
can be difficult to distinguish from the numerical dispersion or ”noise”. In this paper, nu-
merical methods for solving inhomogeneous, hyperbolic equations containing dispersive
source terms are investigated for accuracy and computational effort.

Hyperbolic conservation laws can have discontinuous solutions even if the initial con-
ditions are smooth, and this makes the approximation of the solution difficult. First order
upwind methods are needed to effectively capture such discontinuities. However, first
order methods are highly diffusive in smooth regions. Second order extensions can be
constructed which both resolve the discontinuities and provide better accuracy in smooth
regions. Smooth nonlinear solutions can achieve second order accuracy when using Go-
dunov’s method with second order corrections [5] even though the method is formally
first order accurate, e.g., in Section 15.6 of [2]. [5] provides proof of second order accu-
racy for smooth problems including the case with source terms (Section 7 of [5]). For


