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Abstract. In this paper we propose a development of the finite difference method,
called the tailored finite point method, for solving steady magnetohydrodynamic
(MHD) duct flow problems with a high Hartmann number. When the Hartmann num-
ber is large, the MHD duct flow is convection-dominated and thus its solution may ex-
hibit localized phenomena such as the boundary layer. Most conventional numerical
methods can not efficiently solve the layer problem because they are lacking in either
stability or accuracy. However, the proposed tailored finite point method is capable
of resolving high gradients near the layer regions without refining the mesh. Firstly,
we devise the tailored finite point method for the scalar inhomogeneous convection-
diffusion problem, and then extend it to the MHD duct flow which consists of a cou-
pled system of convection-diffusion equations. For each interior grid point of a given
rectangular mesh, we construct a finite-point difference operator at that point with
some nearby grid points, where the coefficients of the difference operator are tailored
to some particular properties of the problem. Numerical examples are provided to
show the high performance of the proposed method.
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1 Introduction

The purpose of this paper is to devise an efficient tailored finite point method for approx-
imating the solution of magnetohydrodynamic (henceforth, MHD) duct flow problems at
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high Hartmann numbers. We study the problem of finding the velocity u and the induced
magnetic field b for a laminar, fully developed flow of an incompressible, viscous, elec-
trically conducting fluid in a straight channel. The channel has a uniform cross-section
Ω which is an open bounded region in R

2 with a Lipschitz boundary ∂Ω. The fluid is
driven by a constant mechanical pressure gradient −dp/dz. The direction of the constant
transverse external magnetic field b0 may be arbitrary to the x-axis, and both the velocity
u and the induced magnetic field b are parallel to the z-axis.

The generalized equations of the MHD duct flow described above with suitable bound-
ary conditions can be posed in dimensionless form as follows [14, 16]:





−ε∆u+a ·∇b= f1, in Ω,

−ε∆b+a ·∇u= f2, in Ω,

u= g1, on ∂Ω,

b= g2, on ΓD,

∇b·n= g3, on ΓN ,

(1.1)

where u = u(x,y) and b = b(x,y) are the velocity and the induced magnetic field in the
z-direction, respectively; ε is the diffusivity coefficient with 0< ε := 1/Ha < 1 and Ha :=
b0l

√
δ/µ is the Hartmann number, b0 is the intensity of the external magnetic field, l is

the characteristic length of the duct, δ and µ are the electric conductivity and coefficient
of viscosity of the fluid respectively; the convection field is given by

a :=(a1,a2)
⊤=(−sinα,−cosα)⊤,

α∈ [0,π/2] is the angle from the positive y-axis to the externally applied magnetic field
b0, measured in the clockwise direction; fi for i = 1,2 are the given source terms and in
most practical MHD applications, we have

f1≡ ε or f1≡0 and f2≡0, in Ω,

gi for i=1,2,3 are prescribed boundary data;

∂Ω=ΓD∪ΓN with ΓD∩ΓN =∅ and |ΓD|>0;

n is the outward unit normal vector to ΓN .
There are many investigations which use various numerical methods such as finite

difference, finite element and boundary element methods to solve the MHD duct flow
problems. We refer the reader to [8,12–14,16–18] and many references cited therein. How-
ever, when the Hartmann number Ha is large, such an MHD duct flow problem consists
of a coupled system of convection-dominated convection-diffusion equations. It is well
known that the solution of convection-dominated problems may exhibit localized phe-
nomena such as boundary or interior layers, i.e., narrow regions where some derivative
of solution rapidly changes. Most conventional numerical methods can not efficiently


