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Abstract. A full approximation storage multigrid method has been shown to improve
the convergence properties of the D2Q9 BGK lattice Boltzmann method [14]. In this
paper we extend the method to the multiple relaxation time collision model due to its
improved stability. The new method is validated using Poiseuille flow. The method
is then extended to three dimensions. The efficiency of the V-cycle and W-cycle multi-
grid schedules and the under-relaxed Jacobi and Gauss Seidel multigrid smoothers are
reported for the two and three dimensional models for lid driven cavity flow.
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1 Introduction

The lattice Boltzmann method (LBM) has been shown to be a versatile CFD tool that can
be implemented for problems involving complex physical phenomena [3,18,20]. Further-
more, the traditional LBM algorithm lends itself well to high performance paradigms due
to its simple two-step implementation. On a uniform Cartesian grid, this two-step pro-
cedure consists of a collision step, involving local operations at each grid point, and a
streaming step where values are shifted to adjacent grid points. One drawback of the
LBM, however, is the slow convergence rate when solving for steady flows or time-
dependent flows with large separations in relevant time and spatial scales. Multigrid
methods, which have been used in traditional CFD methods to implement solvers that
exhibit linear scaling with respect to the problem size, offer a potential remedy to this
issue.
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In [19], Tölke et al. develop a multigrid method, which solved the discrete Boltzmann
equation with a second order finite difference discretization. The method improved the
convergence properties of the LBM for low Reynolds numbers (Re = 10), however, the
implementation detracted from the parallel friendly nature of the original LBM and the
efficiency gains diminished for Re≥ 100. In [14], Mavriplis proposed a multigrid LBM,
which retained the two-step procedure of the traditional LBM by developing a multigrid
scheme based directly on the non-linear lattice Boltzmann equation. This method im-
proved the computational efficiency of the LBM by multiple orders of magnitude up to
Re=1000. In [16], Patil et al. implemented the method proposed by Mavriplis for the so-
lution of elliptic PDEs, analyzed the efficiency gains and implemented a parallel version
of the algorithm.

To the best of the present authors’ knowledge there has not been any further study of
the method proposed in [14] for steady fluid flows. In this work we extend the method
proposed by Mavriplis to the MRT collision model and propose an implementation in
three dimensions. This is followed by an extensive analysis of the method’s efficiency for
lid driven cavity flow in two and three dimensions.

The structure of this paper is as follows: Section 2 presents the FAS multigrid method
in a general setting, Section 3 discusses the method proposed in [14] and incorporates the
MRT collision model into the method, Section 4 contains a validation and order analysis
of the method for Poiseuille flow, and Sections 5 and 6 contain the efficiency analysis of
the method in two and three dimensions for lid driven cavity flow.

2 FAS multigrid method

First, we will develop the framework of the Full Approximation Storage (FAS) scheme
in the context of solving a system of non-linear equations, A(u)= f , where u is the exact
solution, A is a non-linear operator. In the discussion that follows h and H denote the grid
spacing on the fine and coarse grids respectively. Similarly, variables with a subscripted
h denote variables on the fine grid and variables with a subscripted H denote variables
on the coarse grid. All iterative equations have been written so that the variables on the
n+1th iteration are written in terms of the variables on the nth iteration.

On the fine grid we attempt to solve the system Ah(uh)= fh, where Ah and fh are the
fine grid approximations of A and f , and uh is the exact solution to the resulting system.
Using an iterative scheme to solve the system we can obtain an approximate solution, vh.
The residual of this system is defined as:

rh(vh)= fh−Ah(vh)=Ah(uh)−Ah(vh). (2.1)

Eq. (2.1) provides a posterior error estimate of our approximate solution vh.
For linear problems, Eq. (2.1) can be re-written in terms of the error, eh =uh−vh, as:

Ah(eh)= rh. (2.2)


