Analysis in Theory and Applications Anal. Theory Appl., Vol. **34**, No. 3 (2018), pp. 225-231

Some Characterizations of Bloch Functions

Guanghua He*

College of International Finance and Trade, Zhejiang Yuexiu University of Foreign Languages, Shaoxing 312000, Zhejiang, China

Received 4 September 2017; Accepted (in revised version) 24 January 2018

Abstract. We define Bloch-type functions of $\mathcal{C}^1(\mathbb{D})$ on the unit disk of complex plane \mathbb{C} and characterize them in terms of weighted Lipschitz functions. We also discuss the boundedness of a composition operator C_{ϕ} acting between two Bloch-type spaces. These obtained results generalize the corresponding known ones to the setting of $\mathcal{C}^1(\mathbb{D})$.

Key Words: Bloch space, majorant, composition operator.

AMS Subject Classifications: 11K70, 32A70

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk of the complex plane \mathbb{C} , and $\mathcal{C}^1(\mathbb{D})$ be the set of all complex-valued functions having continuous partial derivatives on \mathbb{D} . For $\alpha > 0$, a function $f \in \mathcal{C}^1(\mathbb{D})$ is called α -Bloch if

$$\|f\|_{\alpha} = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} (|f_z(z)| + |f_{\overline{z}}(z)|) < \infty.$$

It is readily seen that the set of all α -Bloch functions on \mathbb{D} is a Banach space \mathcal{B}^{α} with the norm $\|f\|_{\mathcal{B}^{\alpha}} = |f(0)| + \|f\|_{\alpha}$.

Let $\omega : [0, +\infty) \to [0, +\infty)$ be an increasing function with $\omega(0) = 0$, we say that ω is a *majorant* if $\omega(t)/t$ is non-increasing for t > 0 (cf. [4]). Following [5], given a majorant ω and $\alpha > 0$, the ω - α -Bloch space $\mathcal{B}^{\alpha}_{\omega}$ consists of all functions $f \in \mathcal{C}^{1}(\mathbb{D})$ such that

$$\|f\|_{\omega,\alpha} = \sup_{z \in \mathbb{D}} \omega \left(\left(1 - |z|^2\right)^{\alpha} \right) \left(|f_z(z)| + |f_{\overline{z}}(z)| \right) < \infty$$

and the *little* ω - α -*Bloch space* $\mathbb{B}_{\omega,0}^{\alpha}$ consists of the functions $f \in \mathbb{B}_{\omega}^{\alpha}$ such that

$$\lim_{|z|\to 1^{-}} \omega \left((1-|z|^2)^{\alpha} \right) (|f_z(z)|+|f_{\overline{z}}(z)|) = 0.$$

http://www.global-sci.org/ata/

©2018 Global-Science Press

^{*}Corresponding author. Email address: hegh2003@126.com (G. H. He)

For $0 < \alpha \le 1$, the weighted hyperbolic metric ds_{α} of \mathbb{D} , introduced in [1] is defined as

$$ds_{\alpha}^2 = \frac{|dz|^2}{(1-|z|^2)^{2\alpha}}.$$

Suppose that $\gamma(t)$ ($0 \le t \le 1$) is a continuous and piecewise smooth curve in \mathbb{D} . Then the length of $\gamma(t)$ with respect to the weighted hyperbolic metric ds_{α} is equal to

$$L_{h_{\alpha}}(\gamma) = \int_{\gamma} ds_{\alpha} = \int_{0}^{1} \frac{|\gamma'(t)|}{[(1 - |\gamma(t)|^{2})]^{\alpha}} dt.$$

Consequently, the associated distance between z and w in \mathbb{D} is

$$h_{\alpha}(z,w) = \inf\{L_{h_{\alpha}}(\gamma): \gamma(0) = z, \gamma(1) = w\},\$$

where γ is a continuous and piecewise smooth curve in \mathbb{D} . Note that h_1 ($\alpha = 1$) is the hyperbolic distance on \mathbb{D} .

Let *s*, $t \ge 0$ and *f* be a continuous function in \mathbb{D} . If there exists a constant *C* such that

$$(1-|z|^2)^s(1-|w|^2)^t|f(z)-f(w)| \le C|z-w|$$
 (resp. $\le Ch_{\alpha}(z,w)$),

for any $z, w \in \mathbb{D}$, then we say that f is a *weighted Euclidian (resp. hyperbolic) Lipschitz function* of indices (s,t). In particular, when s = t = 0, we say that f is a *Euclidian (resp. hyperbolic) Lipschitz function* (cf. [12]).

In the theory of function spaces, the relationship between Bloch spaces and (weighted) Lipschitz functions has attracted much attention. For instance, in 1986, Holland and Walsh [7] established a classical criterion for analytic Bloch space in the unit disc \mathbb{D} in terms of weighted Euclidian Lipschitz functions of indices $(\frac{1}{2}, \frac{1}{2})$. Ren and Tu [13] extended the criterion to the Bloch space in the unit ball of \mathbb{C}^n , Li and Wulan [8], Zhao [15] characterized holomorphic α -Bloch space in terms of

$$(1-|z|^2)^{\beta}(1-|w|^2)^{\alpha-\beta}|f(z)-f(w)|/|z-w|.$$

In [16, 17], Zhu investigated the relationship between Bloch spaces and Bergman Lipschitz functions and proved that a holomorphic function belongs to Bloch space if and only if it is Bergman Lipschitz. For the related results of harmonic functions, we refer to [2,3,5,6,12,14] and the references therein.

Motivated by the known results mentioned above, we consider the corresponding problems in the setting of $C^1(\mathbb{D})$ in this paper. In Section 2, we collect some known results that will be needed in the sequel. The main results and their proofs are presented in Sections 3 and 4.

Throughout this paper, constants are denoted by *C*, they are positive and may differ from one occurrence to the other. The notation $A \simeq B$ means that there is a positive constant *C* such that $B/C \le A \le CB$.