A Struwe Type Decomposition Result for a Singular Elliptic Equation on Compact Riemannian Manifolds

Youssef Maliki^{1,*} and Fatima Zohra Terki²

¹ Department of Mathematics, University Aboubekr Belkaid of Tlemcen, Tlemcen, Algeria

² Higher School in Business and Management, Tlemcen, Algeria

Received 21 February 2017; Accepted (in revised version) 31 August 2017

Abstract. On a compact Riemannian manifold, we prove a decomposition theorem for arbitrarily bounded energy sequence of solutions of a singular elliptic equation.

Key Words: Yamabe equation, critical Sobolev exponent, Hardy inequality, bubbles.

AMS Subject Classifications: 58J05

1 Introduction

Let (M,g) be an $(n \ge 3)$ -dimensional Riemannian manifold. In this paper, we are interested in studying on (M,g) the asymptotic behaviour of a sequence of solutions u_{α} , when $\alpha \rightarrow \infty$, of the following singular elliptic equation:

$$\Delta_{g} u - \frac{h_{\alpha}}{\rho_{p}^{2}(x)} u = f(x) |u|^{2^{*}-2} u, \qquad (E_{\alpha})$$

where $2^* = \frac{2n}{n-2}$, h_{α} and f are functions on M, p is a fixed point of M and $\rho_p(x) = dist_g(p, x)$ is the distance function on M based at p (see Definition 2.2).

Certainly, if the singular term $\frac{h_{\alpha}}{\rho_{p}^{2}(x)}$ is replaced by $\frac{n-2}{4(n-1)}Scal_{g}$, then equation E_{α} becomes the prescribed scalar curvature equation which is very known in the literature. When *f* is constant and the function ρ_{p} is of power $0 < \gamma < 2$, Eq. (E_{α}) can be seen as a case of equations that arise in the study of conformal deformation to constant scalar curvature of metrics which are smooth only in some ball $B_{p}(\delta)$ (see [5]).

http://www.global-sci.org/ata/

^{*}Corresponding author. *Email addresses:* malyouc@yahoo.fr (Y. Maliki), fatimazohra113@yahoo.fr (F. Z. Terki)

Equations of type (E_{α}) have been the subject of interest especially on the Euclidean space IR^n . Let $D^{1,2}(IR^n)$ be the Sobolev space defined as the completion of $C_o^{\infty}(IR^n)$, the space of smooth functions with compact support in IR^n , with respect to the norm

$$||u||_{D^{1,2}(IR^n)}^2 = \int_{IR^n} |\nabla u|^2 dx$$

A famous result has been obtained in [8] and it consists of the classification of positive solutions $u \in D^{1,2}(IR^n)$ of the equation

$$\Delta u - \frac{\lambda}{|x|^2} u = u^{\frac{n+2}{n-2}},\tag{E}$$

where $0 < \lambda < \frac{(n-4)^2}{4}$, into the family of functions

$$u_{\lambda}(x) = C_{\lambda} \left(\frac{|x|^{a-1}}{1+|x|^{2a}} \right)^{\frac{n}{2}-1},$$

where C_{λ} is some constant and $a = \sqrt{1 - \frac{4\lambda}{(n-2)^2}}$.

In terms of decomposition of Palais-Smale sequences of the functional energy, this family of solutions was employed in [6] to construct singular bubbles,

$$\mathcal{B}_{\lambda}^{\varepsilon_{\alpha},y_{\alpha}} = \varepsilon_{\alpha}^{\frac{2-n}{2}} u_{\lambda} \left(\frac{x - y_{\alpha}}{\varepsilon_{\alpha}} \right) \quad \text{with} \quad \frac{|y_{\alpha}|}{\varepsilon_{\alpha}} \to 0,$$

which, together with the classical bubbles caused by the existence of critical exponent

$$\mathcal{B}_{0}^{\varepsilon_{\alpha},y_{\alpha}} = \varepsilon_{\alpha}^{\frac{2-n}{2}} u_{0}\left(\frac{x-y_{\alpha}}{\varepsilon_{\alpha}}\right) \quad \text{with} \quad \frac{|y_{\alpha}|}{\varepsilon_{\alpha}} \to \infty,$$

where u_0 being the solution of the non perturbed equation $\Delta u = u^{\frac{n+2}{n-2}}$, give a whole picture of the decomposition of the Palaise-Smale sequences. This decomposition result has been proved in [6] and was the key component for the obtention of interesting existence results for Eq. (*E*) with a function *K* get involved in the nonlinear term. Similar decomposition result has been obtained in [1] for Eq. (*E*) with small perturbation, the authors described asymptotically the associated Palais-Smale sequences of bounded energy.

The compactness result obtained in this paper can be seen as an extension to Riemannian context of those obtained in [6] and [1] in the Euclidean context, the difficulties when working in the Riemannian setting reside mainly in the construction of bubbles.

Historically, a famous compactness result for elliptic value problems on domains of \mathbb{R}^n has been obtained by M. Struwe in [7]. Struwe's result has been extended later by O. Druet et al. in [2] to elliptic equations on Riemannian manifolds in the form

$$\Delta_g u + h_\alpha u = u^{2^* - 1}.$$