Parameterized Littlewood-Paley Operators on Weighted Herz Spaces

Yueshan Wang^{1,*} and Aiqing Chen²

Received 14 November 2016; Accepted (in revised version) 4 July 2017

Abstract. The strong type and weak type estimates of parameterized Littlewood-Paley operators on the weighted Herz spaces $K_q^{\alpha,p}(\omega_1,\omega_2)$ are considered. The boundedness of the commutators generated by *BMO* functions and parameterized Littlewood-Paley operators are also obtained.

Key Words: Parameterized Littlewood-Paley operator, Herz space, weak Herz space, BMO, commutator, Muckenhoupt weight.

AMS Subject Classifications: 42B20, 30H35, 42B35

1 Introduction

Suppose that \mathbb{S}^{n-1} is the unit sphere in $\mathbb{R}^n (n \ge 2)$ equipped with the normalized Lebesgue measure $d\sigma$. Let Ω be a homogeneous function of degree zero on \mathbb{R}^n satisfying $\Omega \in L^1(\mathbb{S}^{n-1})$ and

$$\int_{S^{n-1}} \Omega(x') d\sigma(x') = 0, \tag{1.1}$$

DOI: 10.4208/ata.2017.v33.n4.1

where x'=x/|x| for any $x\neq 0$. Then for $0<\rho< n$, the area integral $\mu_{\Omega,S}^{\rho}$ and the Littlewood-Paley $\mu_{\lambda}^{*,\rho}$ - function are defined respectively by

$$\mu_{\Omega,S}^{\rho}(f)(x) = \left(\iint_{\Gamma(x)} \left| \frac{1}{t^{\rho}} \int_{|y-z| < t} \frac{\Omega(y-z)}{|y-z|^{n-\rho}} f(z) dz \right|^2 \frac{dydt}{t^{n+1}} \right)^{1/2}$$

¹ Department of Mathematics, Jiaozuo University, Jiaozuo 454003, Henan, China

² Department of Mathematics, Jiaozuo Teachers College, Jiaozuo, 454003, Henan, China

^{*}Corresponding author. Email addresses: wangys1962@163.com (Y. S. Wang), jzszcaq@126.com (A. Q. Chen)

and

$$\mu_{\lambda}^{*,\rho}(f)(x) = \left(\iint_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t + |x - y|} \right)^{\lambda n} \left| \frac{1}{t^{\rho}} \int_{|y - z| < t} \frac{\Omega(y - z)}{|y - z|^{n - \rho}} f(z) dz \right|^2 \frac{dy dt}{t^{n + 1}} \right)^{1/2},$$

where $\lambda > 1$ and $\Gamma(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < t\}.$

Now let us turn to the introductions of the corresponding commutators of the parameterized Littlewood-Paley operators above. Let $b \in L^1_{loc}(\mathbb{R}^n)$, $m \in \mathbb{N}$, the commutators $[b^m, \mu^{\rho}_{\Omega,S}]$ and $[b^m, \mu^{*,\rho}_{\lambda}]$ are defined respectively by

$$\begin{split} & [b^{m},\mu_{\Omega,S}^{\rho}](f)(x) \\ & = \left(\iint_{\Gamma(x)} \left| \frac{1}{t^{\rho}} \int_{|y-z| < t} \frac{\Omega(y-z)}{|y-z|^{n-\rho}} [b(x) - b(z)]^{m} f(z) dz \right|^{2} \frac{dy dt}{t^{n+1}} \right)^{1/2} \end{split}$$

and

$$\begin{split} & [b^m, \mu_{\lambda}^{*,\rho}](f)(x) \\ = & \left(\iint_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t+|x-y|} \right)^{\lambda n} \left| \frac{1}{t^{\rho}} \int_{|y-z| < t} \frac{\Omega(y-z)}{|y-z|^{n-\rho}} [b(x) - b(z)]^m f(z) dz \right|^2 \frac{dy dt}{t^{n+1}} \right)^{1/2}. \end{split}$$

In 1990, Torchinsky and Wang [1] gave the weighted $L^2(\mathbb{R}^n)$ boundedness of $\mu_{\Omega,S}^{\rho}$ and $\mu_{\lambda}^{*,\rho}$ for $\rho=1$ and $\Omega\in Lip_{\alpha}(\mathbb{S}^{n-1})$ ($0<\alpha\leq 1$). Here, we say that $\Omega\in Lip_{\alpha}(\mathbb{S}^{n-1})$ if

$$|\Omega(x') - \Omega(y')| \le |x' - y'|^{\alpha}, \quad x', y' \in \mathbb{S}^{n-1}.$$
 (1.2)

For general ρ , in 1999, Sakamoto and Yabuta [2] gave $L^p(\mathbb{R}^n)$ boundedness for $\mu_{\Omega,S}^{\rho}$ and $\mu_{\lambda}^{*,\rho}$ when $\Omega \in Lip_{\alpha}(\mathbb{S}^{n-1})$.

Suppose that $\Omega \in L^q(\mathbb{S}^{n-1})$, $q \ge 1$. Then the integral modulus $\omega_q(\delta)$ of continuity of order q of Ω is defined by

$$\omega_q(\delta) = \sup_{\|\gamma\| \le \delta} \left(\int_{\mathbb{S}^{n-1}} |\Omega(\gamma x') - \Omega(x')|^q d\sigma(x') \right)^{1/q},$$

where γ denotes a rotation on \mathbb{S}^{n-1} and $\|\gamma\| = \sup_{x' \in \mathbb{S}^{n-1}} |\gamma x' - x'|$.

Recently, Ding and Xue obtained the following weighted results.

Theorem 1.1 (see [3]). *Suppose* $\rho > n/2$, $\lambda > 2$ *and* $\Omega \in L^2(\mathbb{S}^{n-1})$ *satisfies*

$$\int_{0}^{1} \frac{\omega_{2}(\delta)}{\delta} (1 + |\log \delta|)^{\sigma} < \infty \tag{1.3}$$

for some $\sigma > 1$. If $1 and <math>\omega \in A_p$, then both of $\mu_{\Omega,S}^{\rho}$ and $\mu_{\lambda}^{*,\rho}$ are bounded on the weighted space $L^p(\mathbb{R}^n,\omega)$.