Direct and Reverse Carleson Conditions on Generalized Weighted Bergman-Orlicz Spaces

Waleed Al-Rawashdeh*

Department of Mathematical Sciences, Montana Tech of The University of Montana, Montana 59701, USA

Received 13 April 2017; Accepted (in revised version) 14 July 2017

Abstract. Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . For $\alpha > -1$, let $dA_{\alpha}(z) = (1+\alpha) (1-|z|^2)^{\alpha} dA(z)$ be the weighted Lebesgue measure on \mathbb{D} . For a positive function $\omega \in L^1(\mathbb{D}, dA_{\alpha})$, the generalized weighted Bergman-Orlicz space $\mathcal{A}^{\psi}_{\omega}(\mathbb{D}, dA_{\alpha})$ is the space of all analytic functions such that

$$\|f\|_{\omega}^{\psi} = \int_{\mathbb{D}} \psi(|f(z)|)\omega(z)dA_{\alpha}(z) < \infty,$$

where ψ is a strictly convex Orlicz function that satisfies other technical hypotheses. Let *G* be a measurable subset of \mathbb{D} , we say *G* satisfies the reverse Carleson condition for $\mathcal{A}^{\psi}_{\omega}(\mathbb{D}, dA_{\alpha})$ if there exists a positive constant *C* such that

$$\int_{G} \psi(|f(z)|)\omega(z)dA_{\alpha}(z) \geq C \int_{\mathbb{D}} \psi(|f(z)|)\omega(z)dA_{\alpha}(z),$$

for all $f \in \mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$. Let μ be a positive Borel measure, we say μ satisfies the direct Carleson condition if there exists a positive constant M such that for all $f \in \mathcal{A}_{\omega}^{\psi}(\mathbb{D}, dA_{\alpha})$,

$$\int_{\mathbb{D}} \psi(|f(z)|) d\mu(z) \leq M \int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z).$$

In this paper, we study the direct and reverse Carleson condition on the generalized weighted Bergman-Orlicz space $\mathcal{A}^{\psi}_{\omega}(\mathbb{D}, dA_{\alpha})$. We present conditions on the set *G* such that the reverse Carleson condition holds. Moreover, we give a sufficient condition for the finite positive Borel measure μ to satisfy the direct carleson condition on the generalized weighted Bergman-Orlicz spaces.

Key Words: Orlicz function, global Δ_2 -condition, reverse Carleson condition, Direct Carleson condition, closed range, Pseudohyperbolic disks, Orlicz spaces, weighted Bergman spaces, generalized weighted Bergman-Orlicz spaces.

AMS Subject Classifications: 46E15, 30C25, 30H05, 46E38, 30C80, 32C15

http://www.global-sci.org/ata/

^{*}Corresponding author. Email address: walrawashdeh@mtech.edu (W. A. Rawashdeh)

1 Introduction

Let \mathbb{D} be the open unit disk $\{z \in \mathbb{D} : |z| < 1\}$ in the complex plane \mathbb{C} . Let $dA(z) = \frac{1}{\pi}dxdy$ be the normalized Lebesgue area measure on \mathbb{D} . For $\alpha > -1$, let $dA_{\alpha}(z) = (1 + \alpha)(1 - |z|^2)^{\alpha}dA(z)$ be the weighted Lebesgue area measure on \mathbb{D} . As usual, we denote by $\mathcal{H}(\mathbb{D})$ the space of all analytic functions on \mathbb{D} . An Orlicz function is a real-valued, continuous, increasing function $\psi:[0,\infty) \to [0,\infty)$ with $\psi(0) = 0$ and $\lim_{t\to\infty} \psi(t) = \infty$. For a finite positive measure μ on \mathbb{D} , the Orlicz space $L^{\psi}(\mathbb{D},d\mu)$ is the space of all measurable functions f such that

$$\int_{\mathbb{D}} \psi(\lambda |f(z)|) d\mu(z) < \infty,$$

for some positive constant λ depending on f. It is well known that $L^{\psi}(\mathbb{D}, d\mu)$ is a Banach space under the following (quasi-)norm

$$\|f\|_{\psi}^{lux} = \inf\left\{C > 0: \int_{\mathbb{D}} \psi\left(\frac{|f(z)|}{C}\right) d\mu(z) \le 1\right\}.$$

This (quasi-)norm is known as Luxemburg norm.

We say a function ψ satisfies the global Δ_2 -condition if for every $r \ge 0$ there is a constant K > 1 such that $\psi(rt) \le K\psi(t)$ for all $t \ge 0$. It is well know that if ψ is convex, then $L^{\psi}(\mathbb{D}, d\mu)$ becomes the space of all functions f such that

$$\int_{\mathbb{D}} \psi(|f(z)|) d\mu(z) < \infty$$

For more information about Orlicz spaces, we refer the reader to the monograph [28], the memoirs [17] and the references therein.

In this paper, we assume ψ : $[0,\infty) \rightarrow [0,\infty)$ is strictly convex Orlicz function satisfying the global Δ_2 -condition. Moreover, we will assume

$$\lim_{t\to\infty}\frac{\psi(t)}{t}=\infty,$$

this condition is essential to exclude the case $\psi(t) = at$ for some a > 0.

For a positive function $\omega \in L^1(\mathbb{D}, dA_\alpha)$, the generalized weighted Bergman-Orlicz space $\mathcal{A}^{\psi}_{\omega}(\mathbb{D}, dA_\alpha)$ is the space of all functions $f \in \mathcal{H}(\mathbb{D})$ such that

$$||f||_{\omega}^{\psi} = \int_{\mathbb{D}} \psi(|f(z)|) \omega(z) dA_{\alpha}(z) < \infty.$$

Hence, the weighted Bergman-Orlicz space is defined as the set

$$\mathcal{A}^{\psi}_{\omega}(\mathbb{D}, dA_{\alpha}) = \mathcal{H}(\mathbb{D}) \cap L^{\psi}(\mathbb{D}, \omega dA_{\alpha}).$$