Toeplitz Operator Related to Singular Integral with Non-Smooth Kernel on Weighted Morrey Space

Yuexiang He*

Department of Mathematics, Jiaozuo University, Jiaozuo, Henan 454003, China

Received 9 May 2016; Accepted (in revised version) 14 February 2017

Abstract. Let T_1 be a singular integral with non-smooth kernel or $\pm I$, let T_2 and T_4 be the linear operators and let $T_3 = \pm I$. Denote the Toeplitz type operator by

$$T^b = T_1 M^b I_\alpha T_2 + T_3 I_\alpha M^b T_4,$$

where $M^b f = bf$, and I_{α} is the fractional integral operator. In this paper, we investigate the boundedness of the operator T^b on the weighted Morrey space when *b* belongs to the weighted BMO space.

Key Words: Toeplitz operator, non-smooth kernel, weighted BMO, fractional integral, weighted Morrey space.

AMS Subject Classifications: 42B20, 42B35

1 Introduction

Let *b* be a locally integrable function on \mathbb{R}^n . The Toeplitz operator related to singular integral operator *T* and fractional integral operator I_{α} is defined by

$$T^{b} = T_{1}M^{b}I_{\alpha}T_{2} + T_{3}I_{\alpha}M^{b}T_{4}, \qquad (1.1)$$

where $T_1 = T$ or $\pm I$ (the identity operator), T_2 and T_4 are the linear operators, $T_3 = \pm I$, and $M^b f = bf$.

Note that the commutators $[b, I_{\alpha}](f) = bI_{\alpha}(f) - I_{\alpha}(bf)$ are the particular cases of the Toeplitz operators T^{b} . The Toeplitz operators T^{b} are the non-trivial generalization of these commutators.

Lin and Lu in [1] obtained the boundedness of Toeplitz operator as (1.1) on $L^p(\mathbb{R}^n)$ when *T* is a strongly singular Calderón-Zygmund operator and *b* belongs to the Lipschitz function space Λ_β ; In [2], Lu and Mo proved that the Toeplitz operator is bounded

http://www.global-sci.org/ata/

240

^{*}Corresponding author. *Email address:* heyuexiang63@163.com (Y. X. He)

on $L^{p}(\mathbb{R}^{n})$ when *T* is a singular integral with non-smooth kernel and *b* is a Lipschitz function. More results about Toeplitz operator can be found in [3,4]. In this paper, we investigate the boundedness of the operator T^{b} on weighted Morrey space when *T* is the singular integral with non-smooth kernel and *b* belongs to the weighted BMO space.

Definition 1.1 (see [5]). Let $1 \le p < \infty$, $0 < \kappa < 1$ and ω be a weight function. Then the weighted Morrey space is defined by

$$L^{p,\kappa}(\omega) = \left\{ f \in L^p_{loc}(\omega) : \|f\|_{L^{p,\kappa}(\omega)} < \infty \right\},$$

where

$$\|f\|_{L^{p,\kappa}(\omega)} = \sup_{B} \left(\frac{1}{\omega(B)^{\kappa}} \int_{B} |f(x)|^{p} \omega(x) dx\right)^{1/p},$$

and the supremum is taken over all balls $B \subset \mathbb{R}^n$.

In order to deal with the fractional order case, we need to consider the weighted Morrey space with two weights.

Definition 1.2 (see [5]). Let $1 \le p < \infty$ and $0 < \kappa < 1$. Then for two weights μ and ν , the weighted Morrey space is defined by

$$L^{p,\kappa}(\mu,\nu) = \left\{ f \in L^p_{loc}(\mu) : \|f\|_{L^{p,\kappa}(\mu,\nu)} < \infty \right\},$$

where

$$\|f\|_{L^{p,\kappa}(\mu,\nu)} = \sup_{B} \left(\frac{1}{\nu(B)^{\kappa}} \int_{B} |f(x)|^{p} \mu(x) dx\right)^{1/p},$$

and the supremum is taken over all balls $B \subset \mathbb{R}^n$.

We introduce the definition of the Hardy-Littlewood maximal operator and several variants.

Definition 1.3. The Hardy-Littlewood maximal operator *Mf* is defined by

$$M(f)(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| dy.$$

For $0 \le \alpha < n, r \ge 1$, we define the fractional maximal operator $M_{\alpha,r}f$ by

$$M_{\alpha,r}(f)(x) = \sup_{x \in B} \left(\frac{1}{|B|^{1-\alpha r/n}} \int_{B} |f(y)|^{r} dy \right)^{1/r},$$