A Perturbation of Jensen *-Derivations from K(H)into K(H)

H. Reisi*

Department of Mathematics, Semnan University, Semnan, Iran.

Received 6 January 2014; Accepted (in revised version) 28 July 2016

Abstract. Let's take *H* as an infinite–dimensional Hilbert space and K(H) be the set of all compact operators on *H*. Using Spectral theorem for compact self–adjoint operators, we prove the Hyers–Ulam stability of Jensen *-derivations from K(H) into K(H).

Key Words: Jensen *-derivation, *C**-algebra, Hyers–Ulam stability. **AMS Subject Classifications**: 52B10, 65D18, 68U05, 68U07

1 Introduction

In a Hilbert space H, an operator T in B(H) is called a compact operator if the image of unit ball of H under T is a compact subset of H. Note that if the operator $T: H \longrightarrow H$ is compact, then the adjoint of T is compact, too. The set of all compact operators on H is shown by K(H). It is easy to see that K(H) is a C^* -algebra [1]. Moreover, every operator on H with finite range is compact. The set of all finite range projections on Hilbert space H is denoted by P(H).

An approximate unit for a *C*^{*}-algebra \mathcal{A} is an increasing net $(u_{\lambda})_{\lambda \in \Lambda}$ of positive elements in the closed unit ball of \mathcal{A} such that $a = \lim_{\lambda} a u_{\lambda} = \lim_{\lambda} u_{\lambda} a$ for all $a \in \mathcal{A}$. Every *C*^{*}-algebra admits an approximate unit [2].

Example 1.1. Let *H* be a Hilbert space with orthonormal basis $(e_n)_{n=1}^{\infty}$. The *C**-algebra K(H) is non–unital since $dim(H) = \infty$. If P_n is a projection on $\mathbb{C}e_1 + \cdots + \mathbb{C}e_n$, then the increasing sequence $(P_n)_{n=1}^{\infty}$ is an approximate unit for K(H).

Theorem 1.1 (see [2]). Let $T: H \longrightarrow H$ be a compact self-adjoint operator on Hilbert space H. Then there is an orthonormal basis of H consisting of eigenvectors of T. The nonzero eigenvalues of T are from finite or countably infinite set $\{\lambda_k\}_{k=1}^{\infty}$ of real numbers and $T = \sum_{k=1}^{\infty} \lambda_k P_k$, where P_k is the orthogonal projection on the finite-dimensional space of eigenvectors corresponding to eigenvalues. If the number of nonzero eigenvalues is countably infinite, then the series converges to T in the operator norm.

http://www.global-sci.org/ata/

©2016 Global-Science Press

^{*}Corresponding author. *Email address:* hamidreza.reisi@gmail.com (H. Reisi)

The problem of stability of functional equations originated from a question of Ulam [5] concerning the stability of group homomorphisms: let (G1,*) be a group and let (G2,*,d) be a metric group with the metric $d(\cdot,\cdot)$. Given $\varepsilon > 0$, does there exist a $\delta(\varepsilon) > 0$ such that if a mapping $h: G_1 \longrightarrow G_2$ satisfies the inequality

$$d(h(x*y),h(x)\star h(y)) < \delta$$

for all $x, y \in G_1$, then there exists a homomorphism $H: G_1 \rightarrow G_2$ with

$$d(h(x),H(x)) < \varepsilon$$

for all $x \in G_1$? If the answer is affirmative, we would say that the equation of homomorphism H(x*y)=H(x)*H(y) is stable. Thus, the stability question of functional equations is that how the solutions of the inequality differ from those of the given functional equation.

Hyers [3] gave the first affirmative answer to the question of Ulam for Banach spaces. Let *X* and *Y* be Banach spaces. Assume that $f: X \longrightarrow Y$ satisfies

$$\|f(x+y)-f(x)-f(y)\| \le \varepsilon$$

for all $x, y \in X$ and some $\varepsilon > 0$. Then, there exists a unique additive mapping $T : X \longrightarrow Y$ such that

$$\|f(x) - T(x)\| \leq \varepsilon$$

for all $x \in X$. Also, if the function $t \mapsto f(tx)$ from \mathbb{R} to Y is continuous for each fixed $x \in X$, then T is an \mathbb{R} -linear function. This method is called the direct method or Hyers–Ulam stability of functional equations.

Note that if *f* is continuous, then the function $r \mapsto f(rx)$ from \mathbb{R} into *Y* is continuous for all $x \in X$. Therefore *T* is \mathbb{R} -linear.

Definition 1.1. Let *X* and *Y* be real linear spaces. For $n \in \{2,3,4,\dots\}$ the mapping $f:X \longrightarrow Y$ is called a Jensen mapping of *n*-variable, if *f* for each $x_1,\dots,x_n \in X$ satisfies the following equation

$$f\left(\frac{x_1+\cdots+x_n}{n}\right) = \frac{1}{n} (f(x_1)+\cdots+f(x_n)).$$

In 2003, J. M. Rassias and M. J. Rassias [4] investigated the Ulam stability of Jensen and Jensen type mappings by applying the Hyers method. In 2012, M. Eshaghi Gordji and S. Abbaszadeh [6] investigated the Hyers–Ulam stability of Jensen type and generalized *n*-variable Jensen type functional equations in fuzzy Banach spaces.

Definition 1.2. Let \mathcal{A} be a C^* -algebra. A mapping $d: \mathcal{A} \longrightarrow \mathcal{A}$ with $d(a^*) = d(a)^*$ for all $a \in \mathcal{A}$ (*-preserving property) is called a Jensen *-derivation if d satisfies

$$d(x_1x_2) = x_1d(x_2) + d(x_1)x_2$$