Hardy Type Estimates for Riesz Transforms Associated with Schrödinger Operators on the Heisenberg Group

Yu Liu and Guobin Tang*

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Received 24 July 2015; Accepted (in revised version) 18 December 2015

Abstract. Let \mathbb{H}^n be the Heisenberg group and Q = 2n+2 be its homogeneous dimension. In this paper, we consider the Schrödinger operator $-\Delta_{\mathbb{H}^n} + V$, where $\Delta_{\mathbb{H}^n}$ is the sub-Laplacian and V is the nonnegative potential belonging to the reverse Hölder class B_{q_1} for $q_1 \ge Q/2$. We show that the operators $T_1 = V(-\Delta_{\mathbb{H}^n} + V)^{-1}$ and $T_2 = V^{1/2}(-\Delta_{\mathbb{H}^n} + V)^{-1/2}$ are both bounded from $H^1_L(\mathbb{H}^n)$ into $L^1(\mathbb{H}^n)$. Our results are also valid on the stratified Lie group.

Key Words: Heisenberg group, stratified Lie group, reverse Hölder class, Riesz transform, Schrödinger operator.

AMS Subject Classifications: 52B10, 65D18, 68U05, 68U07

1 Introduction

Let $L = -\Delta_{\mathbb{H}^n} + V$ be a Schrödinger operator, where $\Delta_{\mathbb{H}^n}$ is the sub-Laplacian on the Heisenberg group \mathbb{H}^n and V the nonnegative potential belonging to the reverse Hölder class B_{q_1} for some $q_1 \ge Q/2$ and Q > 5. In this paper we consider the Riesz transforms associated with the Schrödinger operator L

$$T_1 = V(-\Delta_{\mathbb{H}^n} + V)^{-1}, \quad T_2 = V^{1/2}(-\Delta_{\mathbb{H}^n} + V)^{-1/2}, \quad T_3 = \nabla_{\mathbb{H}^n}(-\Delta_{\mathbb{H}^n} + V)^{-1/2}.$$

We are interested in the Hardy type estimates for the Riesz transform T_i , i=1,2,3. In recent years, some problems related to Schrödinger operators and Schrödinger type operators on the Heisenberg group and other nilpotent Lie group have been investigated by a number of scholars (see [2,3,5–10,12]). Among these papers the core problem is the research of estimates for Riesz transforms associated with the Schrödinger operator *L*. As we know, C. C. Lin, H. P. Liu and Y. Liu have proved that the operator $T_3 = \nabla_{\mathbb{H}^n} (-\Delta_{\mathbb{H}^n} + V)^{-1/2}$ is

http://www.global-sci.org/ata/

©2016 Global-Science Press

^{*}Corresponding author. *Email addresses:* liuyu75@pku.org.cn (Y. Liu), tgb0405@126.com (G. B. Tang)

bounded from $H_L^1(\mathbb{H}^n)$ to $L^1(\mathbb{H}^n)$ in [5]. In this paper we will show that the other two operators T_1 and T_2 are also bounded from $H_L^1(\mathbb{H}^n)$ to $L^1(\mathbb{H}^n)$. At the last section, we simply state the results on the stratified Lie group.

In what follows we recall some basic facts for the Heisenberg group \mathbb{H}^n (cf. [11]). The Heisenberg group \mathbb{H}^n is a lie group with the underlying manifold $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$, and the multiplication

$$(x,y,t)(x',y',t') = (x+x',y+y',t+t'+2x'y-2xy').$$

A basis for the Lie algebra of left-invariant vector fields on \mathbb{H}^n is given by

$$X_{j} = \frac{\partial}{\partial x_{j}} + 2y_{j}\frac{\partial}{\partial t}, Y_{j} = \frac{\partial}{\partial y_{j}} + 2x_{j}\frac{\partial}{\partial t}, T = \frac{\partial}{\partial t}, \quad j = 1, 2, \cdots, n.$$

All non-trivial commutation relations are given by $[X_j, Y_j] = -4T$, $j = 1, 2, \dots, n$. Then the sub-Laplacian $\Delta_{\mathbb{H}^n}$ is defined by $\Delta_{\mathbb{H}^n} = \sum_{j=1}^n (X_j^2 + Y_j^2)$ and the gradient operator $\nabla_{\mathbb{H}^n}$ is defined by

$$\nabla_{\mathbb{H}^n} = (X_1, \cdots, X_n, Y_1, \cdots, Y_n).$$

The dilations on \mathbb{H}^n have the form $\delta_{\lambda}(x,y,t) = (\lambda x, \lambda y, \lambda^2 t), \lambda > 0$. The Haar measure on \mathbb{H}^n coincides with the Lebesgue measure on $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$. We denote the measure of any measurable set *E* by |E|. Then $|\delta_{\lambda}E| = \lambda^Q |E|$, where Q = 2n+2 is called the homogeneous dimension of \mathbb{H}^n .

We define a homogeneous norm function on \mathbb{H}^n by

$$|g| = ((|x|^2 + |y|^2)^2 + |t|^2)^{\frac{1}{4}}, \quad g = (x, y, t) \in \mathbb{H}^n.$$

This norm satisfies the triangular inequality and leads to a left-invariant distant function $d(g,h) = |g^{-1}h|$. Then the ball of radius *r* centered at *g* is given by

$$B(g,r) = \{h \in \mathbb{H}^n : |g^{-1}h| < r\}.$$

The ball B(g,r) is the left translation by g of B(0,r) and we have $|B(g,r)| = \alpha_1 r^Q$, where $\alpha_1 = |B(0,1)|$, but it is not important for us.

A nonnegative locally L^q integrable function V on \mathbb{H}^n is said to belong to B_q $(1 < q < \infty)$ if there exists C > 0 such that the reverse Hölder inequality

$$\left(\frac{1}{|B|}\int_{B}V(g)^{q}dg\right)^{\frac{1}{q}} \leq \frac{C}{|B|}\int_{B}V(g)dg$$

holds for every ball *B* in \mathbb{H}^n .

It is obvious that $B_{q_2} \subset B_{q_1}$ where $q_2 > q_1$. From [3] we know that the B_q class has a property of "self improvement"; that is, if $V \in B_q$, then $V \in B_{q+\epsilon}$ for some $\epsilon > 0$.

Assume that $V \in B_{q_1}$ for some $q_1 > Q/2$. The definition of the auxiliary function m(g, V) is given as follows.