Readjustment of the Paper [J. Kaur and S. S. Bhatia, Integrability and *L*¹-Convergence of Double Cosine Trigonometric Series, Anal. Theory Appl., 27(1) (2011), pp. 32–39.]

Xhevat Z. Krasniqi*

University of Prishtina "Hasan Prishtina", Faculty of Education, Department of Mathematics and Informatics, Avenue "Mother Theresa" 5, 10000 Prishtina, Republic of Kosovo

Received 8 Febraury 2014; Accepted (in revised version) 13 July 2015

Abstract. In this paper, we show that new modified double cosine trigonometric sums introduced in [1] are inappropriate, the class of double sequences J_d introduced there is unusable for such sums and consequently the results obtained in it are completely incorrect. We here introduce appropriate modified double cosine trigonometric sums making the class J_d usable considering a particular double cosine trigonometric series.

Key Words: *L*¹-convergence, double null sequence, cosine trigonometric series, modified sums. **AMS Subject Classifications**: 42A20, 42B05

1 Introduction and auxiliary statements

For a function f(x,y) with two independent variables x and y we write $f \in L^1(T^2)$ if

$$||f|| = \iint_{\mathbb{T}^2} |f(x,y)| dx dy < +\infty,$$

where $T^2 := [0, \pi] \times [0, \pi]$. Let

$$f(x,y) = \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \lambda_j \lambda_k a_{j,k} \cos jx \cos ky$$
(1.1)

be a double cosine series on the positive quadrant $T^2 := [0, \pi] \times [0, \pi]$ of the two dimensional torus, where $\lambda_0 = 1/2$ and $\lambda_i = 1$ for $i = 1, 2, \cdots$, and $\{a_{j,k}\}$ is a double sequence of real numbers.

*Corresponding author. Email address: xhevat.krasniqi@uni-pr.edu (Xh. Z. Krasniqi)

http://www.global-sci.org/ata/

©2015 Global-Science Press

Let us denote by

$$S_{m,n}(x,y) := \sum_{j=0}^{m} \sum_{k=0}^{n} \lambda_j \lambda_k a_{j,k} \cos jx \cos ky, \quad m,n \ge 0,$$

the partial sums of the series (1.1) and

$$f(x,y) = \lim_{m+n\to\infty} S_{m,n}(x,y).$$

In 2011, J. Kaur and S. S. Bhatia [1] introduced some new modified double cosine trigonometric sums as follows

$$g_{m,n}(x,y) = \frac{a_{0,0}}{2} + \sum_{j=1}^{m} \sum_{k=1}^{n} \left(\sum_{i=j\ell=k}^{m} \sum_{\ell=k}^{n} \Delta_{11} \left(a_{i,\ell} \cos i x \cos \ell y \right) \right).$$

Also, they defined the following class of numerical sequences.

Definition 1.1. A double null sequence $\{a_{j,k}\}$ of positive numbers is said to belong to the class J_d if there exists a double sequence $\{A_{j,k}\}$ such that

$$A_{j,k} \downarrow 0, \quad j + k \to \infty, \tag{1.2a}$$

$$\sum_{j=1}^{\infty}\sum_{k=1}^{\infty}jkA_{j,k}<\infty,$$
(1.2b)

and

$$\left|\Delta_{p,q}\left(\frac{a_{j,k}}{jk}\right)\right| \leq \frac{A_{j,k}}{jk}, \quad 1 \leq p+q \leq 2, \tag{1.3}$$

for any nonnegative integers p,q and $j,k \in \{1,2,3,\dots\}$.

Moreover, they have presented the following results:

Theorem 1.1 (see [1]). If a double sequence $\{a_{j,k}\}$ belongs to the class J_d , then $||g_{m,n} - f|| \rightarrow 0$ as $j+k \rightarrow \infty$.

Corollary 1.1 (see [1]). Under condition of Theorem 1.1, the sum-function f of the series (1.1) is an integrable function and (1.1) is the Fourier series of f.

Corollary 1.2 (see [1]). If a double sequence $\{a_{j,k}\}$ belongs to the class J_d , then $||S_{m,n}-f|| \rightarrow 0$ as $j+k \rightarrow \infty$.

Unfortunately, the sums $g_{m,n}(x)$ are not appropriate so that Theorem 1.1, Corollary 1.1 and Corollary 1.2 will be true. Indeed, after some elementary calculations the authors

300