Optimal Recovery of Functions on the Sphere on a Sobolev Spaces with a Gaussian Measure in the Average Case Setting

Zexia Huang¹ and Heping Wang^{2,*}

 ¹ School of Science, Xihua University, Chengdu 610039, China
 ² School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Received 1 December 2014; Accepted (in revised version) 25 March 2015

Abstract. In this paper, we study optimal recovery (reconstruction) of functions on the sphere in the average case setting. We obtain the asymptotic orders of average sampling numbers of a Sobolev space on the sphere with a Gaussian measure in the $L_q(\mathbb{S}^{d-1})$ metric for $1 \le q \le \infty$, and show that some worst-case asymptotically optimal algorithms are also asymptotically optimal in the average case setting in the $L_q(\mathbb{S}^{d-1})$ metric for $1 \le q \le \infty$.

Key Words: Optimal recovery on the sphere, average sampling numbers, optimal algorithm, Gaussian measure.

AMS Subject Classifications: 41A25, 41A35

1 Introduction

This paper is devoted to studying the optimal recovery (reconstruction) of functions on the sphere on a Sobolev space with a Gaussian measure in the average case setting. Let *F* be a Banach space of functions defined on *D*, *G* be a normed linear spaces with norm $\|\cdot\|_G$, and let γ be a centered Gaussian probability measure on *F*. We want to reconstruct functions *f* from *F* using finitely many arbitrary function values f(x) for some $x \in D$. It is well known that, in the average case setting with the average being respect to a centered Gaussian measure, adaptive choice of the above function values as well as nonlinear algorithms do not essentially help, see [20, 24]. Hence, we can restrict our attention to linear algorithms, i.e., algorithms of the form

$$A_N(f) := \sum_{j=1}^N f(x_j) h_j, \quad h_j \in G, \quad x_j \in D.$$
(1.1)

*Corresponding author. Email addresses: xhu_hzx@163.com (Z. X. Huang), wanghp@cnu.edu.cn (H. P. Wang)

http://www.global-sci.org/ata/

©2015 Global-Science Press

For 0 , the*p* $-average error of an algorithm <math>A_N$ in *G* with respect to the measure γ is defined by

$$e^{\operatorname{avg}}(A_N,\gamma,G)_p := \left(\int_F \|f - A_N(f)\|_G^p \gamma(df)\right)^{\frac{1}{p}}.$$

We define the *p*-average sampling numbers of *F* in *G* by

$$g_N^{(a)}(F,\gamma,G)_p := \inf_{x_j \in D, \ h_j \in G, \ j=1,\cdots,N} e^{\operatorname{avg}}(A_N,\gamma,G)_p.$$

We stress that for a centered Gaussian measure, the averaging parameter *p* is irrelevant up to a constant (see [11, Theorem 1.2] or [27, Corollary 1]).

There are a few papers devoted to studying average case approximation, see for example, [4, 5, 9, 10, 12–17, 20, 22–29]. However, much less attention has been devoted to average sampling numbers; for exceptions see, e.g., [13, 14, 23]. In [23] and [14], among others, the authors obtained upper bounds for average sampling numbers on the Wiener space in the uniform norm and on the weighted Korobov spaces in the L_2 metric, respectively. In [13] the authors investigate average sampling numbers of a periodic Sobolev space with a Gaussian measure in the L_q metric for $1 \le q \le \infty$, and obtain their asymptotic orders. More information about average case setting results can be found in [20] and [24].

In the paper, we shall investigate average sampling numbers in the L_q metric for $1 \le q \le \infty$ on a Sobolev space on the sphere with a Gaussian measure, and obtain the asymptotic orders. We show that some worst-case asymptotically optimal algorithms are also asymptotically optimal in the average case setting.

2 Main results

Let $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d : |x| = 1\}$ be the unit sphere of \mathbb{R}^d endowed with the usual rotation variant measure $d\sigma(x)$, and let $d(x,y) = \arccos(x \cdot y)$ be the geodesic distance between two points $x, y \in \mathbb{S}^{d-1}$, where $x \cdot y$ is the usual inner product and $|x| = (x \cdot x)^{1/2}$ is the Euclidean norm. For $1 \le q \le \infty$, denote by $L_q \equiv L_q(\mathbb{S}^{d-1})$ the collection of real measurable functions f on \mathbb{S}^{d-1} with finite norm

$$\|f\|_{q} = \left(\int_{\mathbb{S}^{d-1}} |f(x)|^{q} d\sigma(x)\right)^{\frac{1}{q}}, \quad 1 \le q < \infty,$$

and for $q=\infty$, the essential supremum is understood instead of the integral. We denote by Π_n^d the space of all spherical polynomials of degree at most n, and by \mathcal{H}_l^d the space of all spherical harmonics of degree l on \mathbb{S}^{d-1} . It is well known that the spaces \mathcal{H}_l^d , $l=0,1,\cdots$, are just the eigenspaces corresponding to the eigenvalues -l(l+d-2) of the Laplace-Beltrami operator Δ on the sphere and are mutually orthogonal with respect to the inner product

$$\langle f,g\rangle := \int_{\mathbb{S}^{d-1}} f(x)g(x)d\sigma(x),$$