Riesz Transforms Associated with Schrödinger Operators Acting on Weighted Hardy Spaces

Hua Wang*

College of Mathematics and Econometrics, Hunan University, Changsha 410082, China

Received 23 June 2014; Accepted (in revised version) 25 March 2015

Abstract. Let $L = -\Delta + V$ be a Schrödinger operator acting on $L^2(\mathbb{R}^n)$, $n \ge 1$, where $V \ne 0$ is a nonnegative locally integrable function on \mathbb{R}^n . In this article, we will introduce weighted Hardy spaces $H_L^p(w)$ associated with *L* by means of the square function and then study their atomic decomposition theory. We will also show that the Riesz transform $\nabla L^{-1/2}$ associated with *L* is bounded from our new space $H_L^p(w)$ to the classical weighted Hardy space $H^p(w)$ when $n/(n+1) and <math>w \in A_1 \cap RH_{(2/p)'}$.

Key Words: Weighted Hardy space, Riesz transform, Schrödinger operator, atomic decomposition, A_p weight.

AMS Subject Classifications: 42B20, 42B30, 35J10

1 Introduction

Let $n \ge 1$ and *V* be a nonnegative locally integrable function defined on \mathbb{R}^n , not identically zero. We define the form Ω by

$$Q(u,v) = \int_{\mathbb{R}^n} \nabla u \cdot \nabla v dx + \int_{\mathbb{R}^n} V u v dx$$

with domain $\mathcal{D}(Q) = \mathcal{V} \times \mathcal{V}$ where

$$\mathcal{V} = \Big\{ u \in L^2(\mathbb{R}^n) : \frac{\partial u}{\partial x_k} \in L^2(\mathbb{R}^n) \text{ for } k = 1, \cdots, n, \text{ and } \sqrt{V}u \in L^2(\mathbb{R}^n) \Big\}.$$

It is well known that this symmetric form is closed. Note also that it was shown by Simon [27] that this form coincides with the minimal closure of the form given by the same expression but defined on $C_0^{\infty}(\mathbb{R}^n)$ (the space of C^{∞} functions with compact supports). In other words, $C_0^{\infty}(\mathbb{R}^n)$ is a core of the form Ω .

http://www.global-sci.org/ata/

©2015 Global-Science Press

^{*}Corresponding author. Email address: wanghua@pku.edu.cn (H. Wang)

H. Wang / Anal. Theory Appl., 31 (2015), pp. 138-153

Let us denote by *L* the self-adjoint operator associated with Ω . The domain of *L* is given by

$$\mathcal{D}(L) = \Big\{ u \in \mathcal{V} : \exists v \in L^2(\mathbb{R}^n) \text{ such that } \mathcal{Q}(u, \varphi) = \int_{\mathbb{R}^n} v \cdot \bar{\varphi} dx, \ \forall \varphi \in \mathcal{V} \Big\}.$$

Formally, we write $L = -\Delta + V$ as a Schrödinger operator with the potential *V*. Let $\{e^{-tL}\}_{t>0}$ be the semigroup of linear operators generated by -L and $p_t(x,y)$ be its kernel. Since *V* is a nonnegative function on \mathbb{R}^n , then the Feynman–Kac formula implies that

$$0 \le p_t(x,y) \le \frac{1}{(4\pi t)^{n/2}} \exp\left\{-\frac{|x-y|^2}{4t}\right\}$$
(1.1)

for all t > 0 and all $x, y \in \mathbb{R}^n$ (see [24]).

The operator $\nabla L^{-1/2}$ is called the Riesz transform associated with *L*, which is defined by

$$\nabla L^{-1/2}(f)(x) = \frac{1}{\sqrt{\pi}} \int_0^\infty \nabla e^{-tL}(f)(x) \frac{dt}{\sqrt{t}}.$$
 (1.2)

This operator is bounded on $L^2(\mathbb{R}^n)$ (see [17]). Moreover, it was proved in [1,5] that by using the molecular decomposition of functions in the Hardy space $H_L^1(\mathbb{R}^n)$ associated with L, the operator $\nabla L^{-1/2}$ is bounded from $H_L^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$, and hence, by interpolation, is bounded on $L^p(\mathbb{R}^n)$ for all $1 . Now we assume that <math>V \in RH_q$ (Reverse Hölder class). In [25], Shen showed that $\nabla L^{-1/2}$ is a Calderón-Zygmund operator if $q \ge n$. On the other hand, when $n/2 \le q < n$, then $\nabla L^{-1/2}$ is bounded on $L^p(\mathbb{R}^n)$ for 1 , $where <math>1/p_0 = 1/q - 1/n$, and the above range of p is optimal (see also [25]). For more information about the Hardy spaces $H_L^p(\mathbb{R}^n)$ associated with Schrödinger operators when 0 , we refer the readers to [6–10, 29, 31] and the references therein.

In the weighted case, in [28], Song and Yan introduced the weighted Hardy spaces $H_L^1(w)$ associated with *L* in terms of the square function and established their atomic decomposition theory. Furthermore, they also showed that the Riesz transform $\nabla L^{-1/2}$ is bounded on $L^p(w)$ for $1 , and bounded from <math>H_L^1(w)$ to the classical weighted Hardy space $H^1(w)$.

As a continuation of [28], the main purpose of this paper is to define the weighted Hardy spaces $H_L^p(w)$ associated with *L* for $0 and then study their atomic characterizations. Moreover, we will also prove that <math>\nabla L^{-1/2}$ is bounded from $H_L^p(w)$ to the classical weighted Hardy space $H^p(w)$ for n/(n+1) . Our main result is stated as follows.

Theorem 1.1. Suppose that $L = -\Delta + V$. Let $n/(n+1) and <math>w \in A_1 \cap RH_{(2/p)'}$. Then the operator $\nabla L^{-1/2}$ is bounded from $H_I^p(w)$ to the classical weighted Hardy space $H^p(w)$.

It is worth pointing out that when $L = -\Delta$ is the Laplace operator on \mathbb{R}^n , then the space $H_L^p(w)$ coincides with the classical weighted Hardy space $H^p(w)$. Therefore, in this special case, we can derive that the classical Riesz transform $\nabla(-\Delta)^{-1/2}$ is bounded