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Abstract. In this paper, some results on the upper convex densities of self-similar sets
at the contracting-similarity fixed points are discussed. Firstly, a characterization of the
upper convex densities of self-similar sets at the contracting-similarity fixed points is
given. Next, under the strong separation open set condition, the existence of the best
shape for the upper convex densities of self-similar sets at the contracting-similarity
fixed points is proven. As consequences, an open problem and a conjecture, which
were posed by Zhou and Xu, are answered.
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1 Introduction and preliminaries

It is well known that the theory of Hausdorff measure is the basis of fractal geometry
and Hausdorff measure is an important notion in the study of fractals (see [1,2]). But un-
fortunately, it is usually difficult to calculate the exact value of the Hausdorff measures
of fractal sets. Since Hutchinson [3] first introduced the self-similar set satisfying the
open set condition (OSC), many authors have studied this class of fractals and obtained
a number of meaningful results (see [1–10]). Among them, Zhou and Feng’s paper [5]
has attracted widespread attention since it was published in 2004. In [5], Zhou and Feng
thought the reason for the difficulty in calculating Hausdorff measures of fractals is nei-
ther computational trickiness nor computational capacity, but a lack of full understand-
ing of the essence of Hausdorff measure. Some authors recently studied self-similar sets
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by means of upper convex density and best covering, which are very important to the
study of Hausdorff measure (see [5–10]). In [5], Zhou and Feng posed eight open prob-
lems and six conjectures on Hausdorff measure of similar sets. Among them, a problem
and a conjecture are as follows.

Let E⊂Rn be a self-similar set satisfying OSC, the Hausdorff dimension of E be s, i.e.,

dimH E= s, and x∈Rn. Denote by D
s
C(E,x) the upper convex density of E at the point x.

Problem 1.1 (see [5]). Under what conditions is there a subset Ux in Rn with |Ux|>0 such
that

D
s
C(E,x)=

Hs(E∩Ux)

|Ux|s
?

Such a set Ux is called a best shape for the upper convex density of E at the point x.

Conjecture 1.1 (see [5]). s=dimH E>1 ⇒ there is an x∈E such that D
s
C(E,x)<1. Further-

more, D
s
C(C×C,A)< 1, where C×C denotes the Cartesian product of the middle third

Cantor set with itself and A denotes any vertex of C×C (see [5, Fig. 4]).

Recently, in order to study Conjecture 1.1 above, Xu [6] and Xu and Zhou [7] in-
troduced the notion ”contracting-similarity fixed point”, and obtained a sufficient and
necessary condition for the upper convex density of the self-similar s-set at the simple-
contracting-similarity fixed point less than 1. In [7], a conjecture was posed as follows.

Conjecture 1.2 (see [7]). Let E⊂Rn be a self-similar s-set satisfying OSC. Suppose that x is

a contracting-similarity fixed point of E. Then D
s
C(E,x)<1 if and only if Hs(E∩U)< |U|s

for each compact subset U in Rn with x∈U and |U|>0.

This is an important conjecture connecting Hausdorff measure and upper convex
density. In Xu [6], it was shown that Conjecture 1.2 would be true if we only consid-
ered the upper convex density at the simple-contracting-similarity fixed point of a self-
similar s-set satisfying the strong separation set condition (SSC), instead of the one at the
contracting-similarity fixed point of a self-similar s-set satisfying OSC. In the subsequent
section (i.e., Section 2), we will set up a characterization of the upper convex densities of
self-similar set at the contracting-similarity fixed points. Then, under the strong separa-
tion condition (SSC), we show that the existence of the best shape for the upper convex
densities of the self-similar sets at the contracting-similarity fixed points. As application-
s, we answer an open problem (i.e., Problem 1.1 above), which was posed by Zhou and
Feng in 2004. As consequences, we prove Conjecture 1.2 does hold true in the case that
SSC is satisfied, thus generalizing the corresponding the result in Xu [6]. Some defini-
tions, notations and known results are from references [1–4].

Let d be the standard distance function on Rn, where Rn is Euclidian n-space. Denote
d(x,y) by |x−y|, ∀x,y∈Rn. If U is a nonempty subset of Rn, we define the diameter of U
as |U|= sup{|x−y| : x,y∈U}. Let δ be a positive number. If E⊂

⋃

i Ui and 0< |Ui|≤ δ for
each i, we say that {Ui} is a δ-covering of E.


