DOI: 10.4208/ata.2015.v31.n1.5

Analysis in Theory and Applications Anal. Theory Appl., Vol. **31**, No. 1 (2015), pp. 58-67

C^p Condition and the Best Local Approximation

H. H. Cuenya^{*} and D. E. Ferreyra

Departamento de Matemática, Universidad Nacional de Río Cuarto, (5800) Río Cuarto, Argentina

Received 22 May 2014; Accepted (in revised version) 8 March 2015

Abstract. In this paper, we introduce a condition weaker than the L^p differentiability, which we call C^p condition. We prove that if a function satisfies this condition at a point, then there exists the best local approximation at that point. We also give a necessary and sufficient condition for that a function be L^p differentiable. In addition, we study the convexity of the set of cluster points of the net of best appoximations of f, $\{P_{\epsilon}(f)\}$ as $\epsilon \to 0$.

Key Words: Best *L^p* approximation, local approximation, *L^p* differentiability.

AMS Subject Classifications: 41A50, 41A10

1 Introduction

Let x_1 , $a \in \mathbb{R}$, a > 0, and let \mathcal{L} be the space of equivalence class of Lebesgue measurable real functions defined on $I_a := (x_1 - a, x_1 + a)$. For each Lebesgue measurable set $A \subset I_a$, with |A| > 0, we consider the semi-norm on \mathcal{L} ,

$$\|h\|_{p,A} := \left(|A|^{-1} \int_{A} |h(x)|^{p} dx\right)^{1/p}, \quad 1$$

where |A| denotes the measure of the set A. As usual, we denote by $L^p(I_a)$ the space of functions $h \in \mathcal{L}$ with $||h||_{p,I_a} < \infty$. If $0 < \epsilon \le a$, $I_{-\epsilon} := (x_1 - \epsilon, x_1)$, $I_{+\epsilon} := (x_1, x_1 + \epsilon)$, we write $||h||_{p, I_{\epsilon}} = ||h||_{p, I_{\epsilon}}$, and $||h||_{p,\epsilon} = ||h||_{p,I_{\epsilon}}$. For a non negative integer s, we denote by Π^s the linear space of polynomials of degree at most s. Henceforward, we consider $n \in \mathbb{N} \cup \{0\}$. If $h \in L^p(I_a)$, it is well known that there exists a unique best $||\cdot||_{p,\epsilon}$ -approximation of h from Π^n , say $P_{\epsilon}(h)$, i.e., $P_{\epsilon}(h) \in \Pi^n$ satisfies

$$||h-P_{\epsilon}(h)||_{p,\epsilon} \leq ||h-P||_{p,\epsilon}$$
 for all $P \in \Pi^n$.

http://www.global-sci.org/ata/

©2015 Global-Science Press

^{*}Corresponding author. *Email addresses:* hcuenya@exa.unrc.edu.ar (H. H. Cuenya), deferreyra@exa.unrc.edu.ar (D. E. Ferreyra)

 $P_{\epsilon}(h)$ is the unique polynomial in Π^{n} , which verifies

$$\int_{I_{\epsilon}} |(h - P_{\epsilon}(h))(x)|^{p-1} \operatorname{sgn}((h - P_{\epsilon}(h))(x))(x - x_1)^j dx = 0, \quad 0 \le j \le n,$$
(1.1)

see [2].

If $\lim_{\epsilon \to 0} P_{\epsilon}(h)$ exists, say $P_0(h)$, it is called the *best local approximation of h at x*₁ *from* Π^n (b.l.a.). In general, we shall also denote by $P_0(h)$ the set

$$\Big\{P\in\Pi^n:P=\lim_{k\to\infty}P_{\epsilon_k}(h) \text{ for some } \epsilon_k\downarrow 0\Big\}.$$

The problem of best local approximation was formally introduced and studied in a paper by Chui, Shisha and Smith [3]. However, the initiation of this could be dated back to results of J. L. Walsh [10], who proved that the Taylor polynomial of an analytic function h over a domain is the limit of the net of polynomial best approximations of a given degree, by shrinking the domain to a single point. Later, several authors studied the existence of the b.l.a. assuming a certain order of differentiability. In [8] and [12], this problem was considered when h is L^p differentiable. Recently, in [7] and [5] the authors proved the existence of the b.l.a. under weaker conditions, more precisely they assumed existence of lateral L^p derivatives of order n and L^p differentiability of order n-1. In [4] it was proved that if p = 2 and h is differentiable up to order n-1, then $P_0(h)$ is either empty or convex. Later, in [11] using interpolation properties of the best approximation, the author extended this result for 1 . The main purpose of this paper is to givemore general conditions on a function <math>h so that there exists the b.l.a., and to study its connection with the L^p differentiability. Further, we study the convexity of $P_0(h)$. The following definition is motivated by the characterization (1.1).

Definition 1.1. We shall say that $f \in L^p(I_a)$ satisfies the C^p condition of order n at x_1 , if there exists $Q \in \Pi^n$ such that

$$\int_{I_{\epsilon}} |(f-Q)(x)|^{p-1} \operatorname{sgn}((f-Q)(x))(x-x_1)^j dx = o(\epsilon^{n(p-1)+j+1}),$$
(1.2)

 $0 \le j \le n$, as $\epsilon \to 0$.

Analogously, we shall say that *f* satisfies the left (right) C^p condition of order *n* at x_1 , if there exists $Q \in \Pi^n$ verifying (1.2) with $I_{-\epsilon}(I_{+\epsilon})$ instead of I_{ϵ} .

We denote with $c_n^p(x_1)$ the class of functions in $L^p(I_a)$ which satisfy the C^p condition of order n at x_1 . We recall that a function $f \in L^p(I_a)$ is L^p differentiable of order n at x_1 (i.e., $f \in t_n^p(x_1)$) if there exists $Q \in \Pi^n$ such that $||f - Q||_{p,\epsilon} = o(\epsilon^n)$. This concept was introduced by Calderón and Zygmund in [1]. Using the Hölder inequality, it is easy to see that $t_n^p(x_1) \subset c_n^p(x_1)$, moreover the inclusion is strict. In fact, if $h(x) = \sin(1/x)$, $x \neq 0$, then $h \in c_0^2(0)$, however a straightforward computation shows that $h \notin t_0^2(0)$. It immediately follows from Definition 1.1 that $c_n^p(x_1)$ satisfies: a) If $f \in c_n^p(x_1)$, then $f + P \in c_n^p(x_1)$ for