A Complement to the Valiron-Titchmarsh Theorem for Subharmonic Functions

Alexander I. Kheyfits*

Bronx Community College and the Graduate Center of the City University of New York, 2155 University Avenue, Bronx, New York 10453, USA

Received 29 December 2013; Accepted (in revised version) 5 March 2014

Available online 31 March 2014

Abstract. The Valiron-Titchmarsh theorem on asymptotic behavior of entire functions with negative zeros has been recently generalized onto subharmonic functions with the Riesz measure on a half-line in \mathbb{R}^n , $n \ge 3$. Here we extend the Drasin complement to the Valiron-Titchmarsh theorem and show that if u is a subharmonic function of this class and of order $0 < \rho < 1$, then the existence of the limit $\lim_{r\to\infty} \log u(r)/N(r)$, where N(r) is the integrated counting function of the masses of u, implies the regular asymptotic behavior for both u and its associated measure.

Key Words: Valiron-Titchmarsh theorem, Tauberian theorems for entire functions with negative zeros, Subharmonic functions in \mathbb{R}^n with Riesz masses on a ray, associated Legendre functions on the cut.

AMS Subject Classifications: 31B05, 30D15, 30D35

1 Main result

The well-known Valiron-Titchmarsh Tauberian theorem [6] states that if an entire function f(z) of non-integer order ρ with negative zeros has regular behavior for z=x>0, i.e., there exists the finite limit

$$\lim_{r \to \infty} r^{-\rho} \log f(r) = h$$

then its zeros have the density $\lim_{t\to\infty} t^{-\rho} n(t) = \frac{\sin \pi \rho}{\pi} h$, where *n* is the counting function of the zeros of *f*. In turn, this implies that the function *f* is of completely regular growth in the entire complex plane. For the history of this result and the relevant references see, e.g., [5]. Drasin [1] proved a complementary result.

http://www.global-sci.org/ata/

©2014 Global-Science Press

^{*}Corresponding author. *Email address:* akheyfits@gc.cuny.edu (A. I. Kheyfits)

A. I. Kheyfits / Anal. Theory Appl., 30 (2014), pp. 136-140

If *f* is an entire function of order λ , $0 < \lambda < 1$, with all zeros real and negative, then either one of the conditions

$$\log \frac{M(r)}{n(r)} \rightarrow L > 0, \quad r \rightarrow \infty,$$

or

$$\log \frac{M(r)}{N(r)} \rightarrow L\lambda > 0, \quad r \rightarrow \infty,$$

where $N(r) = \int_0^r t^{-1} n(t) dt$, implies the asymptotic relation as $r \to \infty$,

$$\log M(r) \sim r^{\lambda} \psi(r).$$

Here λ is determined by the transcendental equation $L = \pi/\sin(\pi\lambda)$ and ψ is a slowly varying function, that is, $\psi(\sigma r)/\psi(r) \rightarrow 1$ as $r \rightarrow \infty$ for each fixed $\sigma > 0$. The relation $a \sim b$ hereafter means the existence of the limit $\lim_{r \rightarrow \infty} a(r)/b(r) = 1$.

The author [5] has recently generalized the Valiron-Titchmarsh theorem onto subharmonic functions in \mathbb{R}^n , $n \ge 3$. In the present note we complement the results of [5] by extending the Drasin theorem onto the subharmonic functions in \mathbb{R}^n , $n \ge 3$. Introduce in \mathbb{R}^n spherical coordinates $x = (r, \theta)$, r = |x|, $\theta = (\theta_1, \dots, \theta_{n-1})$, such that $x_1 = r\cos\theta_1$, $0 \le \theta_1 \le \pi$, and $0 \le \theta_k \le 2\pi$ for $k = 2, 3, \dots, n-1$.

In the case under consideration, the subharmonic functions can be represented as [4, Eq. (4.5.16)]

$$u(x) = \int_{\mathbb{R}^n} P_n(r, t, \theta_1) d\mu(y) + u_0(x),$$
(1.1)

where μ is the Riesz associated mass of u, u_0 is a subharmonic function of smaller growth than u, and the kernel P_n is the modified Weierstrass canonical kernel,

$$P_n(r,t,\theta_1) = rt^{n-2} ((n-1)r^2 \cos \theta_1 + rt[n+(n-2)\cos^2 \theta_1] + (n-1)t^2 \cos \theta_1).$$

Without loss of generality, hereafter we assume $u(0) = u_0 = 0$. Let $n(t) = \mu(\overline{B_t})$ be the counting function of the associated masses of u, where $\overline{B_t}$ is the closed ball of radius t centered at the origin of \mathbb{R}^n , and $N(r) = (n-2) \int_0^r t^{1-n} n(t) dt$ its average. Now we can state our result.

Theorem 1.1. Let u be a subharmonic function in \mathbb{R}^n , $n \ge 3$, of order ρ , $0 < \rho < 1$, whose Riesz masses are distributed over the negative x_1 -axis. If the limit

$$\lim_{r \to \infty} \frac{u(r)}{n(r)} = \Delta \tag{1.2}$$

exists, then, as $r \rightarrow \infty$ *,*

$$u(x) \sim H(\theta) r^{\rho} \psi(r) \tag{1.3}$$