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Abstract. In this paper, we study an ODE of the form

b0u(4)+b1u′′+b2u+b3u3+b4u5=0, ′=
d

dz
,

which includes, as a special case, the stationary case of the cubic-quintic Swift-
Hohenberg equation. Based on Nevanlinna theory and Painlevé analysis, we first
show that all its meromorphic solutions are elliptic or degenerate elliptic. Then we
obtain them all explicitly by the method introduced in [7].
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1 Introduction

The real Swift-Hohenberg equation with a cubic-quintic nonlinearity

∂tu= au+bu3−cu5−d(q2
0+∂2

x)
2u, a,b,c,d,q0 ∈R, (1.1)

has been extensively studied as a model equation to test the bifurcation of solutions of
certain PDEs. For detailed results, see [12] and the references therein. Almost all the work
concerning (1.1) is done by numerical method, few work has been undertaken on finding
exact solutions of the stationary case of (1.1) in explicit form. Therefore the devotion
of this paper to search for exact meromorphic solutions of (1.2) has both mathematical
interests and physical significance. Here, meromorphic functions mean the functions
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meromorphic on the whole complex plane. For the stationary case, we have 0 on the l.h.s
of (1.1) and it motivates the author to study a general ODE

b0u(4)+b1u′′+b2u+b3u3+b4u5=0, ′=
d

dz
, (1.2)

where bi ∈C, i=1,2,3,4,5 and b0b4 6=0. For b4 =0, which corresponds to real cubic Swift-
Hohenberg (RCSH) equation, the meromorphic solutions of (1.2) have been studied in [6].

Recently, Kao and Knobloch [12] have studied the ODE (1.2) with two arbitrary con-
stants b2 and b3. In our paper, we consider the ODE (1.2) with all the coefficients arbitrary.
Compared with their work, the main differences are as follows. First we prove that (1.2)
does not have any entire solutions and then we explicitly find all its meromorphic solu-
tions with at least one pole on C. In other words, we have found all the meromorphic
solutions whether or not they have poles. In addition, by applying Proposition 2.1, it is
shown that one can make use of the same method as we do in this paper to explicitly
find all the (traveling wave) meromorphic solutions of many other ODEs and PDEs. In
Section 4, we will present some new real solutions of the ODE (1.2) by choosing specific
coefficients in (1.2).

Without loss of generality, we may assume b0=1 and b4=−3/2 by the transformation
u 7→ ku with k = 4

√
−3/2b4. Multiplying (1.2) by u′ and then integrating the resulting

equation yield

4u′u′′′−2(u′′)2+2b1(u
′)2+2b2u2+b3u4−u6= c, (1.3)

where c∈C is the integration constant.

The structure of this paper can now be explained. In Section 2, we will prove that
all meromorphic solutions of the ODE (1.3) must belong to class W (like Weierstrass [9]),
consisting of elliptic functions and their successive degeneracies, i.e., elliptic functions,
rational functions of one exponential exp(kz), k∈C and rational functions of z. Here, W
is chosen because Weierstrass proved that functions in class W are the only meromorphic
functions satisfying an algebraic addition theorem [15, pp. 490]. The method involved
here is a refinement [5] of Eremenko’s method used in [8] as well as [9, 10], which is
based on the local singularity analysis of meromorphic solutions of ODEs as well as the
zero distribution and order of growth of meromorphic solutions. This is a very power-
ful method. For example, it has been used [9] to characterize all meromorphic travel-
ing wave solutions of the Kuramoto-Sivashinsky (KS) equation. One key point of this
method is that an upper bound on the number of poles of solutions to the ODEs being
considered in the fundamental region F can be found. Here, the fundamental region F

refers to C, the period strip or the fundamental parallelogram corresponding to u ratio-
nal, simply periodic or elliptic respectively. Then this allows us to construct explicitly all
the meromorphic solutions of (1.3), as we shall do in Section 3. This can be done by either
applying the subequation method [4, 14], or (as we will do in this paper) making use of
the following result.


