On Potentially Graphical Sequences of G - E(H)

Bilal A. Chat^{1,*} and S. Pirzada²

 ¹ Department of Mathematical Sciences, Islamic University of Science and Technology Awantipora, Pulwama-India
² Department of Mathematics, University of Kashmir-India

Received 7 June 2017; Accepted (in revised version) 20 April 2018

Abstract. A loopless graph on *n* vertices in which vertices are connected at least by *a* and at most by *b* edges is called a (a,b,n)-graph. A (b,b,n)-graph is called (b,n)-graph and is denoted by K_n^b (it is a complete graph), its complement by \overline{K}_n^b . A non increasing sequence $\pi = (d_1, \dots, d_n)$ of nonnegative integers is said to be (a,b,n) graphic if it is realizable by an (a,b,n)-graph. We say a simple graphic sequence $\pi = (d_1, \dots, d_n)$ is potentially $K_4 - K_2 \cup K_2$ -graphic if it has a realization containing an $K_4 - K_2 \cup K_2$ as a subgraph where K_4 is a complete graph on four vertices and $K_2 \cup K_2$ is a set of independent edges. In this paper, we find the smallest degree sum such that every *n*-term graphical sequence contains $K_4 - K_2 \cup K_2$ as subgraph.

Key Words: Graph, (*a*,*b*,*n*)-graph, potentially graphical sequences.

AMS Subject Classifications: 05C07

1 Introduction

Let G(V, E) be a simple graph (a graph without multiple edges and loops) with n vertices and m edges having vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. The set of all non-increasing nonnegative integer sequences $\pi = (d_1, d_2, \dots, d_n)$ is denoted by NS_n . A sequence $\pi \in NS_n$ is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π . The set of all graphic sequences in NS_n is denoted by GS_n . There are several famous results, Havel and Hakimi [7,8] and Erdös and Gallai [2] which give necessary and sufficient conditions for a sequence $\pi = (d_1, d_2, \dots, d_n)$ to be the degree sequence of a simple graph G. Another characterization of graphical sequences can be seen in Pirzada and Yin Jian Hu [15]. A graphical sequence π is potentially Hgraphical if there is a realization of π containing H as a subgraph, while π is forcibly Hgraphical if every realization of π contains H as a subgraph. A sequence $\pi = (d_1, d_2, \dots, d_n)$

http://www.global-sci.org/ata/

©2018 Global-Science Press

^{*}Corresponding author. *Email address:* bchat11180gmail.com (B. A. Chat), sdpirzada@yahoo.co.in (S. Pirzada)

is said to be potentially K_{r+1} - graphic if there is a realization G of π containing K_{r+1} as a subgraph. It is shown in [4] that if π is a graphic sequence with a realization G containing H as a subgraph, then there is a realization G of π containing H with the vertices of H having |V(H)| largest degree of π . If π has a realization in which the r+1 vertices of largest degree induce a clique, then π is said to be potentially A_{r+1} -graphic. We know that a graphic sequence π is potentially K_{k+1} -graphic if and only if π is potentially A_{k+1} -graphic [17]. The disjoint union of the graphs G_1 and G_2 is defined by $G_1 \cup G_2$. Let K_k and C_k respectively denote a complete graph on k vertices and a cycle on k vertices.

In order to prove our main results, the following notations, definitions and results are needed. Let G = (V(G), E(G)) be a simple graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$. The degree of v_i is denoted by d_i for $1 \le i \le n$. Then $\pi = (d_1, d_2, \dots, d_n)$ is the degree sequence of G, where d_1, d_2, \dots, d_n may be not in increasing order. In order to prove our main results, we also need the following notations and results. Let $\pi = (d_1, d_2, \dots, d_n) \in NS_n, 1 \le k \le n$. Let

$$\begin{aligned} \pi'' = & (d_1 - 1, \cdots, d_{k-1} - 1, \cdots, d_{d_k+1} - 1, d_{d_k+2}, \cdots, d_n), & \text{if } d_k \ge k, \\ = & (d_1 - 1, \cdots, d_k - 1, \cdots, d_{d_k+1}, \cdots, d_{k-1}, d_{k+1}, d_n), & \text{if } d_k < k. \end{aligned}$$

Denote $\pi'_k = (d_1^{i'}, d_2^{i'}, \dots, d_{n-1}^{i'}), 1 \le i' \le n$, where $d_1^{i'}, d_2^{i'}, \dots, d_{n-1}^{i'}$ is a rearrangement of the n-1 terms of π'' . Then π'' is called the residual sequence obtained by laying off d_k from π .

Definition 1.1. A wheel graph W_n is a graph with n vertices $(n \ge 4)$ formed by connecting a single vertex to all vertices of an (n-1) cycle. A wheel graph on 4 and 5 vertices are shown in Fig. 1 below.

In 1960 Erdős and Gallai gave the following necessary and sufficient condition.

Theorem 1.1 (see Erdős, Gallai [2]). Let $n \ge 1$. An even sequence $\pi = (d_1, \dots, d_n)$ is graphical if and only if

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

is satisfied for each integer k, $1 \le k \le n$.

Figure 1: