Square Root Functional Equation on Positive Cones

H. Rezaei*

Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran

Received 27 March 2012; Accepted (in revised version) 15 October 2013

Available online 31 December 2013

Abstract. A square root functional equation on positive cones of *C**-algebras is introduced and its solution and Hyers-Ulam-Rassias stability are investigated.

Key Words: Hyers-Ulamstability, fixed point, additive functional equation. **AMS Subject Classifications**: 39B52, 47H10

1 Introduction

The stability theory of functional equation is originated from the well-known Ulam's problem [1] concerning the stability of homomorphisms in metric groups: Let (*G*,*) be a group and (*X*,·) be a metric group. Does for every $\varepsilon > 0$ there exist $\delta > 0$ such that if $f: G \rightarrow X$ satisfies

$$d(f(x*y), f(x) \cdot f(y)) < \delta$$
 for $x, y \in G$,

then a homomorphism $h: G \to X$ exists with $d(f(x), h(x)) < \varepsilon$ for $x \in G$? Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers's Theorem was generalized by Aoki [3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1 (Th. M. Rassias). Consider two Banach spaces E_1 , E_2 , and let $f : E_1 \rightarrow E_2$ be a mapping such that f(tx) is continuous in t for each fixed x. Assume that there exist $\theta \ge 0$ and $p \in [0,1)$, such that

$$\frac{\|f(x+y) - f(x) - f(y)\|}{\|x\|^p + \|y\|^p} \le \theta \quad \text{for any } x, y \in E_1.$$

Then there exists a unique linear mapping $T: E_1 \rightarrow E_2$ *such that*

$$\frac{\|f(x) - T(x)\|}{\|x\|^p} \le \frac{2\theta}{2 - 2^p} \quad for \ any \ x \in E_1.$$

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. *Email address:* rezaei@mail.yu.ac.ir (H. Rezaei)

The paper of Th. M. Rassias [4] has provided a lot of influence in the development of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. A generalization of the Th. M. Rassias theorem was obtained by Gavruta [5] by using a general controb function in place of the unbounded Cauchy difference in the spirit of Th. M. Rassias's approach. Following the innovative approach of the Th. M. Rassias theorem [4], J. M. Rassias [6] replaced the factor $||x||^p + ||y||^p$ by $||x||^p ||y||^q$ for $p,q \in \mathbb{R}$ with p+q=1. The stability problem of several functional equations has been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [7–10]). Let \mathcal{A} be a C^* -algebra and $a \in \mathcal{A}$ be a selfadjoint element, i.e., $a=a^*$. Then a is said to be positive if it is of the form $a=bb^*$ for some $a \in \mathcal{A}$. The set of positive elements of \mathcal{A} is denoted by \mathcal{A}^+ . Note that \mathcal{A}^+ is a closed convex cone (see [11]). Moreover, It is well-known that for a positive element a and a positive integer n there exists a unique positive element $x \in \mathcal{A}^+$ such that $a = x^n$. In this case, we denote x by $\sqrt[n]{a}$. In the following some preliminary properties of \mathcal{A}^+ are listed [11]:

Theorem 1.2. Suppose that A is a C*-algebra.

- (i) A^+ is closed in A,
- (*ii*) $ax \in A^+$ *if* $x \in A^+$ *and* $a \ge 0$,
- (iii) $x + y \in A^+$ if $x, y \in A^+$,
- (iv) $xy \in A^+$ if $x, y \in A^+$ and xy = yx,
- (v) $x \in A^+$ and $-x \in A^+$, then x = 0.

Let \mathcal{A} and \mathcal{B} be two C^* -algebra and \mathcal{A}^+ and \mathcal{B}^+ be the corresponding positive cones. We introduce the following pair of functional equations

$$\begin{cases} f(x)f(y) = f(y)f(x), \\ f(ax+by) = a^2 f(x) + 2ab\sqrt{f(x)f(y)} + b^2 f(y), \end{cases}$$
(1.1)

for every $x, y \in A^+$ and $f: A^+ \to B^+$. Here *a*, *b* are two nonnegative real scalars that $a+b\neq 0$. By part (iv) of Theorem 1.2, the first equation of condition (1.1) is needed for the second equation of (1.1) to be well-defined. Note that the function $f: A^+ \to B^+$ by $f(x) = cx^2$, $c \ge 0$, is a solution of the functional equation (1.1). Applying (1.1) for x = y = 0, x = 0, and y = 0, separately, gives f(0) = 0; $f(ax) = a^2 f(x)$, and $f(by) = b^2 f(y)$, respectively. Hence (1.1) can be modified by the following:

$$f(ax+by) = f(ax) + 2\sqrt{f(ax)f(by)} + f(by) = \left(\sqrt{f(ax)} + \sqrt{f(by)}\right)^2,$$

and consequently,

$$\sqrt{f(ax+by)} = \sqrt{f(ax)} + \sqrt{f(by)}.$$