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Abstract. In order to study the approximation by reciprocals of polynomials with real
coefficients, one always assumes that the approximated function has a fixed sign on
the given interval. Sometimes, the approximated function is permitted to have finite
sign changes, such as l(l≥1) times. Zhou Songping has studied the case l=1 and l≥2
in Lp spaces in order of priority. In this paper, we studied the case l≥2 in Orlicz spaces
by using the function extend, modified Jackson kernel, Hardy-Littlewood maximal
function, Cauchy-Schwarz inequality, and obtained the Jackson type estimation.
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1 Introduction and main result

Denote by Πn(+) the set of all polynomials with positive coefficients of degree n, that is

Πn(+)=

{
Pn(x) : Pn(x)= ∑

0≤k+l≤n

ak,l x
k(1−x)l ,ak,l >0

}
.

In order to consider approximation by reciprocals of polynomials with real coeffi-
cients,we always assume that the given function f has a fixed sign on the given interval.
In general,we allow the function f to have finite sign changes, such as l(l≥1) times, and
this result was first given by Leviatan, Lubinsky in [1]. They proved the following.

Theorem 1.1. Let f (x)∈C[−1,1] change its sign exactly l times in (−1,1), say at −1<b1<b2<

···< bl <1, then for each n≥1, there exists Pn(x)∈Πn(+) having the same sign as f in (bl,1),
such that for x∈ [−1,1]

∥∥∥∥ f (x)−
∏

l
j=1(x−bj)

pn(x)

∥∥∥∥
C

≤C(l+1)2ω
(

f ,
1

n

)

C
.
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In [2], Zhou partly generalized the result in [1] for the case l = 1, 1< p <∞. In [3],
Wang and Wu generalized the result in [2] to Orlicz spaces. In [4], Zhou and Mei studied
the case f (x)∈L

p

[0,1]
(1< p<∞) and have sign changes l(l≥2) times, they obtained

Theorem 1.2. Let f (x)∈L
p

[0,1]
(1<p<∞), and change sign exactly l(l≥2) times in (0,1), then

there exist 0<b1<b2< ···<bl <1 and Pn(x)∈Πn(+), such that

∥∥∥∥ f (x)−
∏

l
j=1(x−bj)

pn(x)

∥∥∥∥
L

p

[0,1]

≤Cp,b,lω( f ,n− 1
2 )L

p

[0,1]
,

where b=min{|bj+1−bj| : j=1,2,··· ,l−1}, Cp,b,l is a positive constant depending only on p, b
and l.

In this paper we consider the similar problem in Orlicz spaces.
Let M(u) and N(v) be mutually complementary N functions, the definition and prop-

erties of N function can be seen in [5]. The Orlicz space L∗
M(G) corresponding to the N

function M(u) consists of all Lebesgue measurable functions u(x) on G, of which the
Orlicz norm

‖u‖M = sup
ρ(v,N)≤1

∣∣∣∣
∫

G
u(x)v(x)dx

∣∣∣∣ (1.1)

is finite, here

ρ(v,N)=
∫

G
N(v(x))dx

is the modulus of v(x) with respect to N(v). According to [5], the Orlicz norm (1.1) can
also be calculated by

‖u‖M = inf
α>0

1

α

(
1+

∫

G
M(αu(x))dx

)
. (1.2)

Define the modulus of smoothness of the function f (x)∈L∗
M(G) as

ω( f ,t)M = sup
0≤h≤t

‖ f (·+h)− f (·)‖M(Ih ),

where Ih=[0,1−h] and 0≤ t<1.

Definition 1.1. Let f (x)∈L∗
M[0,1], we say f (x) changes its sign exactly l times at a1,a2,··· ,al ,

if there exist l points 0< a1 < a2 < ···< al <1, such that

σ sgn
( l

∏
j=1

(x−aj)
)

f (x)>0 a.e. x∈ [0,1], σ=±1,

and such that for every j=1,2,··· ,l, any 0<η< aj+1−aj (al+1=1),

meas
(
{x∈ (aj ,aj+1) : f (x) 6=0}∩(aj ,aj+η)

)
>0,

where we require meas{x∈ [0,a1 ] : f (x) 6=0}>0.


