On Approximation by Reciprocals of Polynomials with Positive Coefficients

Lian Hai and Garidi Wu*

College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, P.R. China.

Received 10 October 2012

Abstract. In order to study the approximation by reciprocals of polynomials with real coefficients, one always assumes that the approximated function has a fixed sign on the given interval. Sometimes, the approximated function is permitted to have finite sign changes, such as $l(l \ge 1)$ times. Zhou Songping has studied the case l=1 and $l\ge 2$ in L^p spaces in order of priority. In this paper, we studied the case $l\ge 2$ in Orlicz spaces by using the function extend, modified Jackson kernel, Hardy-Littlewood maximal function, Cauchy-Schwarz inequality, and obtained the Jackson type estimation.

Key Words: Approximation, polynomial, Steklov function, Orlicz space, modulus of continuity. **AMS Subject Classifications**: 41A17, 41A20

1 Introduction and main result

Denote by $\Pi_n(+)$ the set of all polynomials with positive coefficients of degree *n*, that is

$$\Pi_n(+) = \left\{ P_n(x) : P_n(x) = \sum_{0 \le k+l \le n} a_{k,l} x^k (1-x)^l, a_{k,l} > 0 \right\}.$$

In order to consider approximation by reciprocals of polynomials with real coefficients, we always assume that the given function f has a fixed sign on the given interval. In general, we allow the function f to have finite sign changes, such as $l(l \ge 1)$ times, and this result was first given by Leviatan, Lubinsky in [1]. They proved the following.

Theorem 1.1. Let $f(x) \in C_{[-1,1]}$ change its sign exactly *l* times in (-1,1), say at $-1 < b_1 < b_2 < \cdots < b_l < 1$, then for each $n \ge 1$, there exists $P_n(x) \in \Pi_n(+)$ having the same sign as f in $(b_l, 1)$, such that for $x \in [-1,1]$

$$\left\|f(x) - \frac{\prod_{j=1}^{l} (x-b_j)}{p_n(x)}\right\|_C \leq C(l+1)^2 \omega \left(f, \frac{1}{n}\right)_C.$$

http://www.global-sci.org/ata/

©2013 Global-Science Press

^{*}Corresponding author. *Email addresses:* hailian198809@126.com (L. Hai), garidiwu@163.com, wgrd@imnu.edu.cn (G. R. D. Wu)

In [2], Zhou partly generalized the result in [1] for the case l = 1, $1 . In [3], Wang and Wu generalized the result in [2] to Orlicz spaces. In [4], Zhou and Mei studied the case <math>f(x) \in L_{[0,1]}^p$ ($1) and have sign changes <math>l(l \ge 2)$ times, they obtained

Theorem 1.2. Let $f(x) \in L^p_{[0,1]}$ $(1 , and change sign exactly <math>l(l \ge 2)$ times in (0,1), then there exist $0 < b_1 < b_2 < \cdots < b_l < 1$ and $P_n(x) \in \Pi_n(+)$, such that

$$\left\|f(x) - \frac{\prod_{j=1}^{l} (x-b_j)}{p_n(x)}\right\|_{L^p_{[0,1]}} \le C_{p,b,l} \omega(f, n^{-\frac{1}{2}})_{L^p_{[0,1]}},$$

where $b = \min\{|b_{j+1}-b_j|: j=1,2,\dots,l-1\}$, $C_{p,b,l}$ is a positive constant depending only on p, b and l.

In this paper we consider the similar problem in Orlicz spaces.

Let M(u) and N(v) be mutually complementary N functions, the definition and properties of N function can be seen in [5]. The Orlicz space $L^*_{M(G)}$ corresponding to the N function M(u) consists of all Lebesgue measurable functions u(x) on G, of which the Orlicz norm

$$\|u\|_{M} = \sup_{\rho(v,N) \le 1} \left| \int_{G} u(x)v(x) dx \right|$$
(1.1)

is finite, here

$$\rho(v,N) = \int_G N(v(x)) \mathrm{d}x$$

is the modulus of v(x) with respect to N(v). According to [5], the Orlicz norm (1.1) can also be calculated by

$$\|u\|_{M} = \inf_{\alpha > 0} \frac{1}{\alpha} \left(1 + \int_{G} M(\alpha u(x)) \mathrm{d}x \right).$$
(1.2)

Define the modulus of smoothness of the function $f(x) \in L^*_{M(G)}$ as

$$\omega(f,t)_M = \sup_{0 \le h \le t} \|f(\cdot+h) - f(\cdot)\|_{M(I_h)},$$

where $I_h = [0, 1-h]$ and $0 \le t < 1$.

Definition 1.1. Let $f(x) \in L^*_{M[0,1]}$, we say f(x) changes its sign exactly l times at a_1, a_2, \dots, a_l , if there exist l points $0 < a_1 < a_2 < \dots < a_l < 1$, such that

$$\sigma \operatorname{sgn}\left(\prod_{j=1}^{l} (x-a_j)\right) f(x) > 0 \quad a.e. \quad x \in [0,1], \quad \sigma = \pm 1,$$

and such that for every $j = 1, 2, \dots, l$, any $0 < \eta < a_{j+1} - a_j \ (a_{l+1} = 1)$,

$$\max(\{x \in (a_j, a_{j+1}) : f(x) \neq 0\} \cap (a_j, a_{j+\eta})) > 0,$$

where we require meas{ $x \in [0, a_1]: f(x) \neq 0$ } > 0.