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Abstract. The paper considers the Krylov-Lanczos and the Eckhoff approximations for

recovering a bivariate function using limited number of itsFourier coefficients. These ap-

proximations are based on certain corrections associated with jumps in the partial deriva-

tives of the approximated function. Approximation of the exact jumps is accomplished by

solution of systems of linear equations along the idea of Eckhoff. Asymptotic behaviors of

the approximate jumps and the Eckhoff approximation are studied. Exact constants of the

asymptotic errors are computed. Numerical experiments validate theoretical investigations.
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1 Introduction

It is well known that approximation of a 2-periodic and smooth function on the real line by

the truncated Fourier series

SN( f ;x) :=
N

∑
n=−N

fneiπnx, fn :=
1
2

∫ 1

−1
f (x)e−iπnxdx

is highly effective. If the 2-periodic extensions off and its derivatives up to the orderp are

continuous on the real line, butf (p) is discontinuous, the uniform convergence rate isO(N−p)

(see[48]). The approximation is accompanied by the Gibbs phenomenon[48] when the approx-

imated function is discontinuous or non-periodic. The oscillations caused by this phenomenon

typically propagate into regions away from singularities and degrade the quality of approxima-

tion. Even if the approximated function is analytic but non-periodic the error falls only as fast as
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O(1/N) over the entire interval except in zones of widthO(1/N) nearx = ±1 where the error is

alwaysO(1).

Much efforts were devoted to overcoming the convergence deficiency (see, for example, [3],

[11], and [45] with references therein). An efficient approach of convergence acceleration by

subtracting a polynomial representing the discontinuities (jumps) in the function and its deriva-

tives was suggested by Krylov in 1906[23] (see also [40] (pp. 88–99), and [46] (pp. 144-147)).

Lanczos, in 1956[24], in 1964[25] and in 1966[26] independently developed the same approach

with more formality. He introduced a basic system of polynomials B(k;x) that played a central

role in the method and pointed out a close connection betweentheB(k;x) and Bernoulli poly-

nomials. That was why polynomial subtraction method was called also as Bernoulli method.

Jones and Hardy in 1970[22] and Lyness in 1974[29] considered convergence acceleration of

trigonometric interpolation by polynomial subtraction. They showed the relation of the Krylov-

Lanczos method with the theory of Lidstone interpolation[27] . Since then, it widely considered

in the context of Fourier series[3],[8]−[11],[19],[31],[32] , and trigonometric interpolation[32],[38] .

The key problem in the Krylov-Lanczos method is approximation of the exact jump val-

ues. Ordinarily, such values are unknown and in general onlyFourier coefficients or discrete

Fourier coefficients of a given function may be specified. If arbitrary pointwise values of the

function can be calculated then the finite difference formulas can be set up for approximation

of these quantities. Approaches resembling this approach have been attempted under various

names and apparently with varying success for the special case where the approximated func-

tion is smooth with only singularity at the end points of the interval: Gottlieb and Orszag in

1977 (polynomial subtractions for nonperiodic problems)[20], Lanczos in 1966 (increasing the

convergence of Fourier series by adding properly chosen boundary terms)[26] Lyness in 1974

(Lanczos representation)[29] , and Roache in 1978 (reduction to periodicity)[41] . Whereas, even if

the arbitrary pointwise values of the function can be calculated, approximation of jump values

via finite differences is not recommended for this purpose[29]. Even in the case of a uniform grid,

finite difference approximations are notoriously unreliable. Moreover, in many applications the

Fourier coefficients can be calculated but pointwise valuesand derivatives are not explicitly

available.

As noted in[15], the previous lack of robust methods for the approximation of jump values

was the central reason why the polynomial subtraction technique has not been utilized more

extensively. The first attempt towards more robust approachwas initiated by Gottlieb et al[21]


