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Abstract. Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a

natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu

and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which

would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu

and A. Chakraborty, we present some new iterated function systems by using the so-called

generalized contractive mappings, which will also cover a large range of mappings. Our

purpose is to prove the existence and uniqueness of attractors for such class of iterated

function systems by virtue of a Banach-like fixed point theorem concerning generalized

contractive mappings.
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1 Introduction

As a natural generalization of the well-known Banach contraction principle, iterated func-

tion systems (IFS) were introduced by Hutchinson (see [8]) and popularized by Barnsley (see
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[4]). They represent one way of defining fractals as attractors of certain discrete dynamical sys-

tems. Moreover, they can be effectively applied to fractal image compressions. Therefore, it

is no doubt that they have been attracting considerable attention of mathematicians and com-

puter experts (see e.g. [3, 5-7, 10-13]). As observed recently in Andres[1], the same approach

can be naturally extended to iterated multifunction systems (IMS) with resulting objects called

multivalued fractals.

In this paper, the existence of new fractals is proved by means of the Banach-like theorem

for so-called generalized contractive mappings. As a consequence, some new iterated function

systems are founded, which are an important addition to Hutchinson’s Iterated Function System

and K-Iterated Function System.

2 Iterated Function Systems

In this section we recall some well known aspects of iterated function system used in the

sequel (more complete and rigorous treatments may be found in [4] or [8]).

Let X denote a complete metric space with a distance function d and T be a mapping from

X into itself. Then T is called a contraction mapping if there is a constant 0 ≤ s < 1 such that

d(T (x),T (y)) ≤ sd(x,y).

Polish mathematician S. Banach proved a very important result, regarding contraction map-

ping in 1922, known as Banach Contraction Principle (see [2]).

Theorem 2.1[2]. Let T : X → X be a contraction mapping on a complete metric space

(X ,d). Then T possesses exactly one fixed point x∗ ∈ X. Moreover, for any point x in X, the

sequence {Tn(x) : n = 0,1,2, · · · } converges to x∗ ∈ X. That is limn→∞ Tn(x) = x∗ for each x ∈ X.

In the famous paper [8], J.E. Hutchinson proved that, given a set of contractions in a complete

metric space X , there exists a unique nonempty compact set A ⊂ X , named the attractor or fractal

of the iterated functions system (IFS).

IFS generally employs contractive maps over a complete metric space (X ,d), where the

Banach’s celebrated result mentioned above guarantees the existence and uniqueness of the fixed

point known as “attractor" or “fractal". This can be done since the Hutchinson-Barnsley operator

is also a contraction mapping over H(X), where H(X) denotes the space whose points are the

compact subsets of X .

We now give some basic definitions and theorems concerning iterated function system,

which are used in the proof below. Most of notations and results here is taken from [12].


