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Abstract. In this note, we prove that the Toeplitz-type Operator ®%, generated by the gen-
eralized fractional integral, Calderén-Zygmund operator and VMO funtion is bounded from
LP*(R") to L%*(R™) . We also show that under some conditions @2, f € VLY*(Bg) , the

vanishing-Morrey space.
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1 Introduction and Main Result

Suppose that L is a linear operator on L?(R"), which generates an analytic semigroup e =%
with a kernel p;(x,y) satisfying a Gaussian kernel bound, that is,
C _ P
|pt(x’y)|§t_%le T ) (11)

for x,y € R"and all r > 0.

For 0 < o < n, the generalized fractional integral L~%/% generated by the operator L is

defined by

LRI = s [ O o) (12)
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When L = A is the Laplacian operator on R”, L=%/2 is the classical fractional integral I,
for example see [1], which is given by

C((n—0)/2) [ f0)
220T (0 /2) Sy T~y

lof(x) =

In 1982, S. Chanillo? showed that for all 0 < o < n and b € BMO(R"), the commutator
[b,14] is bounded from L?(R") to L(R") with 1 < p <n/a,1/q=1/p— a/n. In 2004, Duong
and Yan P/ proved that for all 0 < o < nand b € BMO, both L~%/2 and the commutator [b, L~ %/?]
are bounded from L”(R") to LY(R"), where 1 < p <n/o, 1/g=1/p—a/n. If b € BMO(R"),
the commutator 7 f = bT f — T (bf) , T is a Calderén-Zygmund operator with a standard kernel
K , we know that T? is (L?, LP)-boundedness for 1 < p < oo

In fact, since the kernel of L~%/2 is K (x,y) and the kernel of e~"* is p, (x,y), which satisfies

(1.1), we have
L% f( / Ko (x,y) f(y)dy,

thus

1 © d
Ko(x,y) = W/O Pt(x,y)t_aﬁ- (1.3)

And using(1.1),
sine(1-1) ['(n/2—0a/2) 1

L(ae/2)  Jx—y=e

[Ka(x,y)| <C (1.4)

C(n/2—a/2)|y—z| =% (15)

[Ka(x.3) ~ Ka(x,2)| +[Kalynx) = Ka(2.2)] < C— e —

Let B = B(x,p) be a ball in R" of radius p at the point x.
Definition 1.1.  Given f € L. (R"), let us set

Mf(x) =sup ]B\/’f )|dy, for a.e.xeR".

xEB

M is the Hardy-Littlewood maximal operator.

Define the Sharp maximal function by

=sup — 5] / |f(v) — fB|dy, for a.e. xeR".

xEB

Definition 1.2. Let f € L. (R") and 0 <1 < 1, we set

1
M, f(x) =su —/ dy, or a.e. xeR"
nf() xeg ‘B’]_n B’f(y)‘ y f



