A NOTE ON H_w^p -BOUNDEDNESS OF RIESZ TRANSFORMS AND θ -CALDERÓN-ZYGMUND OPERATORS THROUGH MOLECULAR CHARACTERIZATION

Luong Dang Ky

(University of Orleans, France)

Received Mar. 5, 2011; Revised Mar. 21, 2011

© Editorial Board of Analysis in Theory & Applications and Springer-Verlag Berlin Heidelberg 2011

Abstract. Let 0 and <math>w in the Muckenhoupt class A_1 . Recently, by using the weighted atomic decomposition and molecular characterization, Lee, Lin and Yang^[11] established that the Riesz transforms $R_j, j = 1, 2, \cdots, n$, are bounded on $H_w^p(\mathbf{R}^n)$. In this note we extend this to the general case of weight w in the Muckenhoupt class A_∞ through molecular characterization. One difficulty, which has not been taken care in [11], consists in passing from atoms to all functions in $H_w^p(\mathbf{R}^n)$. Furthermore, the H_w^p -boundedness of θ -Calderón-Zygmund operators are also given through molecular characterization and atomic decomposition.

Key words: Muckenhoupt weight, Riesz transform, Calderón-Zygmund operator

AMS (2010) subject classification: 42B20, 42B25, 42B30

1 Introduction and Preliminaries

Calderón-Zygmund operators and their generalizations on Euclidean space \mathbb{R}^n have been extensively studied, see for example^[7,14,18,15]. In particular, Yabuta^[18] introduced certain θ -Calderón-Zygmund operators to facilitate his study of certain classes of pseudo-differential operator.

Definition 1.1. Let θ be a nonnegative nondecreasing function on $(0, \infty)$ satisfying

$$\int_0^1 \frac{\theta(t)}{t} \mathrm{d}t < \infty.$$

A continuous function $K : \mathbf{R}^n \times \mathbf{R}^n \setminus \{(x,x) : x \in \mathbf{R}^n\} \to \mathbf{C}$ is said to be a θ -Calderón-Zygmund

singular integral kernel if there exists a constant C > 0 such that

$$|K(x,y)| \le \frac{C}{|x-y|^n}$$

for all $x \neq y$,

$$|K(x,y) - K(x',y)| + |K(y,x) - K(y,x')| \le C \frac{1}{|x-y|^n} \theta\left(\frac{|x-x'|}{|x-y|}\right)$$

for all $2|x-x'| \leq |x-y|$.

A linear operator $T: \mathcal{S}(\mathbf{R}^n) \to \mathcal{S}'(\mathbf{R}^n)$ is said to be a θ -Calderón-Zygmund operator if T can be extended to a bounded operator on $L^2(\mathbf{R}^n)$ and there exists a θ -Calderon-Zygmund singular integral kernel K such that for all $f \in C_c^{\infty}(\mathbf{R}^n)$ and all $x \notin \text{supp } f$, we have

$$Tf(x) = \int_{\mathbf{R}^n} K(x, y) f(y) dy.$$

When

$$K_j(x,y) = \pi^{-(n+1)/2} \Gamma\left(\frac{n+1}{2}\right) \frac{x_j - y_j}{|x - y|^{n+1}}, \qquad j = 1, 2, \dots, n,$$

then they are the classical Riesz transforms denoted by R_j .

It is well-known that the Riesz transforms R_j , $j = 1, 2, \dots, n$, are bounded on unweighted Hardy spaces $H^p(\mathbf{R}^n)$. There are many different approaches to prove this classical result (see [11, 9]). Recently, by using the weighted molecular theory (see [10]) and combined with García-Cuerva's atomic decomposition [5] for weighted Hardy spaces $H_w^p(\mathbf{R}^n)$, the authors in [11] established that the Riesz transforms R_j , $j=1,2,\cdots,n$, are bounded on $H_w^p(\mathbf{R}^n)$. More precisely, they proved that $||R_j f||_{H^p_w} \le C$ for every $w - (p, \infty, ts - 1)$ -atom where $s, t \in \mathbb{N}$ satisfy $n/(n+s) and <math>((s-1)r_w+n)/(s(r_w-1))$ with r_w is the critical index of w for the reverse Hölder condition. Remark that this leaves a gap in the proof. Similar gaps exist in some litteratures, for instance in [10, 15] when the authors establish H_{ν}^{p} -boundedness of Calderón-Zygmund type operators. Indee d, it is now well-known that (see [1]) the argument "the operator T is uniformly bounded in $H_w^p(\mathbf{R}^n)$ on w- (p, ∞, r) -atoms, and hence it extends to a bounded operator on $H_w^p(\mathbb{R}^n)$ " is wrong in general. However, Meda, Sjögren and Vallarino [13] establishes that (in the setting of unweighted Hardy spaces) this is correct if one replaces L^{∞} -atoms by L^q -atoms with $1 < q < \infty$. Later, the authors in [2] extended these results to the weighted anisotropic Hardy spaces. More precisely, it is claimed in [2] that the operator T can be extended to a bounded operator on $H_w^p(\mathbf{R}^n)$ if it is uniformly bounded on w-(p,q,r)-atoms for $q_w < q < \infty, r \ge [n(q_w/p - 1)]$ where q_w is the critical index of w.